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Framework

In this talk we denote by I a compact interval in R, and we are
going to work with differentiable functions f : I → I .

Definition

A function f : I → I is said to be multimodal if it has a finite
non-zero number of critical points, all non-flat. f is said to be
unimodal if the critical point is unique.

Figure: Logistic Family
qa(x) = ax(1− x)

Figure: Bicritical Cubic Polynomials
f (x) = ax3 + bx2 + (1− a)x − b
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The Overarching Conjecture

Conjecture (Palis Conjecture)

Typical systems in finite dimensional Riemann manifolds posses a
finite number of measures (physical measures) which describe the
time averages of almost all orbits with respect to the Lebesgue
(volume) measure.

In one dimension the conjecture is much more specific

Conjecture (Palis Conjecture for one-dimensional systems)

For generic families of one-dimensional dynamics, with total
probability in parameter space, the attractors are either periodic
sinks (hyperbolic) or carry an absolutely continuous invariant
probability measure (stochastic).

Matteo Tabaro Semi-Hyperbolicity Implies Existence of ACIPs



Physical Measures

Why is the Palis Conjecture important?

Definition

A measure µ is said to be physical or Sinai-Ruelle-Bowen measure
if there exists a set B of positive Lebesgue measure such that for
any x ∈ B and any C 0 function φ the following holds

lim
N→∞

1

N

N−1∑
i=0

φ(f i (x)) =

∫
φ dµ.

Figure: Computer simulation of hyperbolic and stochastic behaviours.

Matteo Tabaro Semi-Hyperbolicity Implies Existence of ACIPs



Density of Hyperbolicity

Theorem (Density of hyperbolicity)

The space of hyperbolic maps is C r open and dense in the space of
multimodal maps, for any r ≥ 1

Proving this conjecture was a collective effort:

Jakobson [Jak71] proved density for r = 1;

Graczyk, Swiatek [GS97] and Lyubich [Lyu97]: the set of
hyperbolic parameters for qa(x) = ax(1− x) is dense in (0, 4];

Kozlovski [Koz03]: the set of hyperbolic maps is C r dense in
the space of unimodal maps for any r ≥ 2;

Kozlovski, Shen, van Strien [KSvS07]: the set of hyperbolic
maps is C r dense in the space of multimodal maps.
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How Many Stochastic Parameters do We Have?

Theorem (Jakobson [Jak81])

Let qa be the logistic family, there exists a subset of stochastic
parameters C ⊂ (0, 4] of positive Lebesgue measure. The
parameter a = 4 is a Lebesgue density point of C .

This prompted solving the Palis conjecture (or one of its variants)
in the following contexts:

Lyubich [Lyu02] proved it for the logistic family;

Avila, Lyubich, de Melo [ALdM03] proved it for non-trivial
analytic family of quasiquadratic maps;

Bruin, Shen, van Strien [BSvS06] showed almost every
f`,c(x) = x` + c , for ` ≥ 2 even, supports a physical measure;

Avila, Lyubich, Shen [ALS11] proved it for f`,c(x) = x` + c
with ` ≥ 2 and even;

Clark [Cla14] proved it for non-trivial analytic family of
unimodal maps (higher criticality).
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When do We Have ACIPs? Metric Conditions

Philosophy

An ACIP describes the average behaviour of typical orbits. The
existence of an ACIP is related to the rate of expansion along the
orbit of the critical values.

Collet-Eckmann property [CE83, Now88]: there exist
C > 0 and ρ > 1 s.t.

|Df n(f (c))| > Cρn ∀c ∈ Crit(f ), ∀n ≥ 1;

Nowicki-van Strien summability condition [NvS91, BvS01]:∑
c∈Crit(f )

∑
n≥1

|Df n(f (c))|−
1

`max <∞

where `max is the maximal order of critical points Crit(f ) of f ;

Growth of the critical derivative [BRLSvS08]:

lim
n→∞
|Df n(f (c))| =∞ ∀c ∈ Crit(f );
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When do We Have ACIPs? Topological Conditions

Theorem (Misiurewicz [Mis81, vS90])

Let f : I → I be a C 2 multimodal map for which all periodic points
are hyperbolic repelling. If the forward orbit of critical points
does not cumulate onto critical points then f carries an ACIP.

We extended this result.

Definition

A multimodal function f : I → I is said to be semi-hyperbolic if
all its periodic points are hyperbolic repelling, and for all
c ∈ Crit(f ) the orbit of c does not accumulate on c .

Theorem (Clark, T., van Strien in preparation)

Let f : I → I be a C 3 semi-hyperbolic multimodal map with
Sf < 0, then f carries an ACIP.
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When do We Have ACIPs? Topological Conditions

Although our result was already known in a more general context,
our new proof may yield useful extensions towards Palis conjecture.

Theorem (Rivera-Letelier, Shen [RLS14, PRL07])

Let f : I → I be a C 3 map whose periodic orbits are all hyperbolic
repelling, and which is topologically exact on its Julia set. If f is
Topologically Collet-Eckmann then f admits an ACIPs.

Remark: In [RLS14] less is assumed on the regularity of f .

Definition

f : I → I is TCE if ∃M,P, r > 0 such that for x ∈ I there exists an
increasing sequence of positive integers {nj}j∈N with nj ≤ P · j and

#
¶
i : 0 ≤ i < nj Compf i (x)f

−(nj−i)(Br (f nj (x))) ∩ Crit(f ) 6= ∅
©
≤ M

It was shown in [CJY94] that TCE(P=1) is equivalent to
semi-hyperbolicity.
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The Two Different Approaches

Our Approach: Pull-back

For n ≥ 0, f n is
quasi-polynomial (finite
decomposition of f n in
simple applications of f
and maps of bounded
distortion)

For any set A of small
measure

|f −n(A)| ≤ C |A|1/`max ;

Foguel’s Theorem implies
ACIP existence.

[RLS14] Approach: Inducing

Define an induced
”Markov” map using
return maps;

Control the geometry of
the domains of such a map
(Shrinking of
Components);

Apply Young’s result on
tail estimates
[You99, PRL07] to obtain
existence of ACIP together
with statistical properties.
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Topological VS Metric Conditions: An Example

Let {fλ}λ∈Λ be a continuous family of bicritical cubic polynomials.
There exists a cubic polynomial fλ∗ : [−1, 1]→ [−1, 1] with two
distinct critical points c0 and c1 such that

1 c0 is preperiodic;

2 ci /∈ ω(ci ) for i = 1, 2 and c0 ∈ ω(c1)⇒ ∃ an ACIP µ;

3 all cycles are hyperbolic repelling;

4 lim infn→∞|Df n
λ∗

(fλ∗(c1))| = 0 (and χ−(c1(λ∗)) = −∞)

Remark

fλ∗ does not satisfy any metric condition, but it admits an ACIP!
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Sketch of the Dynamical Construction

Let fλ0 be non-renorm., with a preperiodic critical point c0, and
with c1 landing on c0. All periodic points are hyperbolic repelling.

Matteo Tabaro Semi-Hyperbolicity Implies Existence of ACIPs



Thank you for the attention!
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