Irreducibility of Gleason polynomials implies irreducibility of Per

Rohini Ramadas

University of Warwick

Carried out at MSRI Complex Dynamics Semester Spring 2022

Critically periodic rational maps

Affine algebraic curve /

Punctured (nodal) Riemann surface

Critically pre-periodic rational maps

Affine algebraic curve /

Punctured (nodal) Riemann surface

Milnor: $\begin{cases} f \\ \text{quadratic} \\ \text{rational} \end{cases} / \begin{cases} Conjugation \cong \mathbb{C}^2 \end{cases}$

Open question: Is Per_{n} irreducible (over \mathbb{C})?

Irreducibility results:

Arfeux-Kiwi: Per, in {cubic polynomials} is

irreducible over C

Buff-Epstein-Koch: Perkit in {cubic polynomials}

and in Equadratic rational maps

are irreducible over C

Gleason polynomials

$$G_{n}$$
 (C) Polynomial with Q-coefficients

Roots are $C \mid \mathcal{Z}^2 + C$ satisfies Per_3

Roots of G_3

Gleason: roots simple

Open: Irreducible? (Over Q)

(Goksel, Buff-Floyd-Koch-Parry)

Experiment (Doyle, Fili, Tobin): Yes for n≤19

Roots of G₃

Roots of G₇

Theorem (Ramadas)

If G, is irreducible over Q

then $\operatorname{Per}_{\boldsymbol{\Lambda}}$ is irreducible over $\mathbb C$

(and is therefore connected)

Corollary (based on Doyle-Fili-Tobin experiments): Per, irreducible over ℂ for n≤19

Weaker concept: Is Per_{η} irreducible over \mathbb{Q} ?

$$(x-iy)(x+iy)=0$$

Reducible over C

Irreducible over Q

Reducible over

Q and C

Milnor: "no intersections at infinity" Polynomials ?

Step 1 (direct consequence of Milnor's "no intersections at infinity"): If G_n is irreducible over $\mathbb Q$, then $\operatorname{Per}_{\mathbb Q}$ is irreducible over $\mathbb Q$

If X is irreducible over Q, and has a smooth point with Q-coordinates, then X is irreducible over C

$$x^2 + y^2 = 0$$

Reducible over C

Irreducible over Q

Step 2: Find a smooth point on Per, with Q-coordinates.

This promotes irreducibility over Q to irreducibility over C

(Compare to Buff-Epstein-Koch for Perk,1)

Issue: Per, unlikely to have points with Q-coordinates, except at the line at infinity

Stimson: Points on Per, at the line at infinity usually singular (many smooth branches)

Step 2.1: desingularize by marking the critical point. Also remove some PCF maps.

$$\begin{array}{c}
\text{Pern} & \longrightarrow H = \begin{cases}
CP^{\pm} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{n-1} & \alpha_{n} & \alpha_{n} \\
CP^{\pm} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{n} & \alpha_{4} & 4
\end{cases}$$

$$\begin{array}{c}
(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}) \\
M_{0,n} = \begin{cases}
P_{1}, \ldots, P_{n} \in CP^{\pm}
\end{cases} / N$$

$$\begin{array}{c}
M_{0,n} = \begin{cases}
P_{1}, \ldots, P_{n} \in CP^{\pm}
\end{cases} / N$$

"Equalizer"=
$$(J_1 \times J_2)^{-1} (diag) \cong \operatorname{Per}_n^*$$

Epstein, Hironaka-Koch, Firsova-Kahn-Selinger

Deligne-Mumford-Knudsen: Compactify $\mathcal{M}_{o,n} \hookrightarrow \mathcal{M}_{o,n}$

At infinity: singular surface with n distinct labeled marked points

Harris-Mumford, Abramovich-Corti-Vistoli: compactify

Ramadas-Silversmith: how to find points "at infinity" and local equations for $\overline{p_{er}}$

Uses Harris-Mumford local coordinates on

Example: in equalizer but not in Pers

Not in equalizer

Theorem (Ramadas): for all n>3, the following is a smooth Q-rational point on \overline{Per}^*

Also: a smooth Q-rational point on Perational

Why Q-rational?

Why smooth? Local coordinates

Why smooth? Local coordinates

$$\frac{1}{\pi_a} \left(t_1, t_2, \dots, t_{n-2} \right)$$

$$\left(t_1, t_2, \dots, t_{n-3} \right)$$

$$\mathcal{M}_{o,n}$$

Equalizer: $t_1 = t_2$, $t_2 = t_3$,..., $t_{n-3} = t_{n-2}$

Ramadas-Silversmith n=5

