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Open question: Is Per, irreducible (over C)?



Irreducibility results:

Arfeux-Kiwi: Per,,  in {cubic polynomials% is

irreducible over C

Buff-Epstein-Koch: Per, ,  in rcubic polynomialsk
and in tquadratic rational maps!

are irreducible over C



Gleason polynomials

Cﬂ“ CCB Polynomial with Q-coefficients
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Gleason: roots simple
Open: Irreducible? (Over Q)

(Goksel, Buff-Floyd-Koch-Parry)

Experiment (Doyle, Fili, Tobin): Yes for n<19

Roots of G, Roots of G-



Theorem (Ramadas)
If G, isirreducible over Q
then Per, is irreducible over C

(and is therefore connected)

Corollary (based on Doyle-Fili-Tobin experiments):
Per, irreducible over C for n<19



Weaker concept: Is Pery
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Milnor: “no intersections at infinity”
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Step 1 (direct consequence of Milnor’s “no intersections at infinity”):

If G, is irreduc

Roots of G,\

ible over @, then Per, is irreducible over Q
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If X is irreducible over Q, and has a smooth point with Q-
coordinates, then X is irreducible over C

(X, iX)

N\

(0,0) the only point with Q-coordinates

X"+ yl= 0

Reducible over C

Irreducible over Q



Step 2: Find a smooth point on Per, with Q-coordinates.

This promotes irreducibility over Q to irreducibility over C
(Compare to Buff-Epstein-Koch for Per, 4.)
l

Issue: Per, unlikely*to have points with Q-coordinates, except at the line at infinity

Stimson: Points on Per,  at the line at infinity usually singular (many smooth branches)
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Step 2.1: desingularize by marking the critical point. Also remove some PCF maps.
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“Equalizer”= C)Tiﬂ‘ay\ Cc\'\a@ = Rer,

Epstein, Hironaka-Koch, Firsova-Kahn-Selinger



Deligne-Mumford-Knudsen: Compactify J\)\Q\Y\ - \)\)\
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At infinity: singular surface with n distinct labeled marked points



Harris-Mumford, Abramovich-Corti-Vistoli: compactify ()—\ > (H
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Equalizer= E: U@%u}n

Ramadas-Silversmith: how to find points “at infinity”
and local equations for E*
)

Uses Harris-Mumford local coordinates on 0\‘\
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Theorem (Ramadas): for all n>3, the following is a
smooth Q-rational point on Per;’
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Why smooth? Local coordinates
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Why smooth? Local coordinates
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Ramadas-Silversmith n=5




