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Modelling mass analyzer performance
with fields determined using the boundary
element method
J. Raymond Gibson,∗ Kenneth G. Evans and Stephen Taylor

Computer modelling is widely used in the design of mass analysers to evaluate proposed designs and determine the effects
of manufacturing imperfections. For quadrupole mass filters and ion traps, the models require accurate values of the electric
field throughout the regions of the analyser in which ions travel. Most published results using models to predict mass analyser
behaviour use electric fields computed with finite element (FE) or finite difference (FD) method. However, the boundary element
method (BEM) is capable of achieving the same, or higher, accuracy with both computation times and memory requirements
that are at least an order of magnitude less than those required by FE and FD methods. In this paper, electric field evaluation is
performed using the BEM formulated in a manner described by previous workers; modifications to their method are described,
which lead to higher accuracy field values. Simultaneous equation solution techniques are incorporated, which avoid solutions
that are physically not realistic. The performance of linear quadrupole mass spectrometers with hyperbolic, circular and planar
section electrodes has been determined using fields computed using these methods and compared with previous results
obtained by alternative field computation techniques and with experiment. Behaviour of an ion trap mass spectrometer with
circular symmetry has also been investigated. The results demonstrate that in each case using the BEM to determine the fields
produces the observed behaviour. Copyright c© 2010 John Wiley & Sons, Ltd.
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Introduction

When developing quadrupole mass filters (QMS filters) and ion
traps for use as mass analyzers, both the cost and problems of
precision reassembly make it difficult to compare the behaviour
of different designs or to perform experiments to measure the
effects of imperfections. Consequently, when designing advanced
systems, for example high performance or unconventional devices,
the simulation of instrument performance prior to construction is
essential. Designers use computer models to predict the behaviour
of proposed systems; the expected system response is obtained
by tracing the individual paths of very large numbers of ions. The
ion motion is determined by computing successive small changes,
steps, in an ion’s position and velocity as it moves in the electric
field of the analyser. A comparison of some modelling techniques
for ion traps is given by Forbes et al.,[1] while March and Todd[2]

give a wide ranging review of all ion trap topics. Development
of ion traps is a very active field; recent examples of the use
of models to predict ion trap behaviour are in Ref. [3–5] and
references therein. There are fewer recent descriptions of models
predicting the performance of QMS filters; early ones are reviewed
by Dawson[6] and recent examples are Gibson and Taylor,[7,8]

Taylor and Gibson,[9] Douglas et al.[10] and Ding et al.[11]

For QMS filter and ion trap designs that match the ideal form,
that is the electrodes have perfect hyperbolic cross sections and
are positioned exactly, the particle equations of motion may
be derived and exact analytical solutions obtained. In non-ideal
cases, determination of particle motion requires very accurate
values of the electric field at all points in the region in which the
particles move. For some symmetrical designs, for example QMS
filters with correctly positioned circular section electrodes, analytic

multipole expansions[10,11] allow the field to be determined. In
most other cases electric field values are obtained by computing
the potential distribution in the region of interest then computing
the derivative of the potential. Determination of the potential
distribution requires the solution of Laplace’s equation with the
boundary conditions set by the electrode geometry and the
applied potentials. One computation technique, the boundary
element method (BEM; Brebbia and Dominguez),[12] provides
solutions of Laplace’s equation and allows direct computation of
the fields without first computing the potentials.

Difficulties Arising in Electric Field
Computation

Some of the available packages for the solution of Laplace’s
equation were developed to investigate problems in stress analysis
or fluid flow and later adapted for electrostatic applications;
exceptions include SIMION[13] and Poisson Superfish.[14] Most, but
not all, packages use finite element (FE) or finite difference (FD)
methods. Generally the regions of interest in stress analysis and
fluid flow investigations are those where rapid field changes occur.
Packages developed for these applications are optimised to find
the field to high accuracy and with high resolution in areas of
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rapid change. For electrostatic systems, rapid change occurs close
to the electrodes but most ions in QMS filters and ion traps travel
in regions that are at a significant distance from the electrodes.
High field accuracy and resolution are required at the ion positions
rather than in regions close to the electrodes. Even with this
requirement the meshes used by FE and FD methods must not
have so few points in regions of rapid change that the accuracy of
the fields at the ion positions is affected.

Packages are further restricted by input mechanisms that only
allow a limited range of electrode geometries to be specified;
consequently, investigators often create their own packages to
model their unique designs. The FE and FD methods, even with
over relaxation techniques, require large computational time to
obtain the accuracy required when designing QMS filters and ion
traps. Also small systematic features sometimes appear in FE and
FD results that have a large effect on particle motion. However,
although these difficulties exist, recent publications describing
models predicting the behaviour of QMS filters and ion traps
and also most available field determination packages, except
the package CPO,[15] use FE or FD techniques to determine the
potentials that are the solution of Laplace’s equation.

A package originally developed for electrostatic lens modelling
that produces accurate field values is CPO.[15] This is based on
the BEM although it differs from most common BEM descriptions,
for example, that of Brebbia and Dominguez,[12] in the manner
in which the solution is formulated. The commercially available
CPO package places some limits on the electrode structures that
can be input and has limited capability for the number of charged
particles that can be traced. Hence, CPO is not always applicable
for design studies of QMS filters and ion traps, although it has
been used successfully in several cases, for example, by Brkic
et al.[16,17] to model miniature QMS devices. CPO is based on the
work by Read and co-workers[18 – 20] but this work appears to have
been neglected in many recent studies (including our own). The
technique was used by Beaty[21,22] and, more recently, Douglas
et al.[10,23,24] use the technique, although they do not appear to
know of Read’s work, and use the term ‘the method of equivalent
charges’. The method is capable of determining the fields to high
accuracy, and computation time is usually at least an order of
magnitude less than for FE and FD methods for results of similar
accuracy. The technique places almost no restriction on electrode
geometry when users develop their own programs.

One reason that the BEM is efficient is that the number
of unknown quantities (simultaneous equations that must be
solved) is greatly reduced compared with FE and FD approaches,
although evaluation of the equation coefficients is often more
complicated. Typically, for the so-called two-dimensional (2D)
problem, the number of unknowns is approximately the square
root of the number required by FE and FD methods to achieve
similar accuracy. This reduction in the number of equations arises
because the BEM reduces the numerical dimensionality of the
problem to be solved by one order; that is determination of a 2D
field requires solution of a one-dimensional problem and three-
dimensional (3D) field determination requires solution of a 2D
problem. The BEM also has the advantage that no fixed potential
boundary is required around the electrode structure although one
may be included if appropriate.

Here, we outline methods for the computation of the electric
fields for 2D systems and for cylindrically symmetrical 3D systems
for which any electrode structure may be defined. The methods
follow the BEM approach introduced by Read et al.,[18,19,20] but

Figure 1. An example of typical positions selected for line charges (solid
points) and defined points (open circles).

we introduce modifications that improve the accuracy of the field
values.

All fields are 3D; the solution may be reduced to one in 2D for
electrode systems whose cross section is independent of position
in the third dimension. That is, for field computation, the electrode
system is of infinite length in the third dimension; when the fields
are used for predicting QMS filter behaviour, this is equivalent
to ignoring end effects. A 2D solution is chosen when possible
because it usually reduces the computation time and memory
requirements by at least an order of magnitude for all methods of
field determination.

2D Field Determination Using the BEM

The approach by Read et al. is to replace the electrodes by a
number of charges at the surfaces of the electrodes. These charges
are selected to require that the potentials at selected points on
the surfaces of all electrodes equal the potentials applied to the
electrodes; here, we call the points on the electrodes defined
points. That is, the set of charges produces the same potential at
any defined point as is produced by the electrode structure. For
the 2D solution, a wide range of charge systems can be devised,
for example, narrow rectangular sheet charges of infinite length.
The most simple charge system for computational evaluation is a
set of infinite length line charges of infinitesimal diameter as used
by Douglas et al.[23]

Figure 1 illustrates the selection of charge and defined point
positions for an electrostatic quadrupole with circular electrodes;
the numbers of charges and defined points illustrated are almost
two orders of magnitude less than the number required for an
accurate solution. In Fig. 1, there are equal numbers of charges
and defined points; later, we show that use of additional defined
points improves the field values.

The potential difference Va − Vb between two points distances
ra and rb from an infinite line charge of σk Coulombs per unit
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length is

Va − Vb = − σ k

2πε0
ln

(
ra

rb

)
(1)

Solutions of many electrostatic problems involve equations
similar to Eqn 1 and it is conventional to define the zero of
potential to be the value at an infinite distance from the charges,
that is, with rb infinite. However, it is not possible to use this
definition to devise a simple formula for the potential at any
distance from an infinite length line charge because it requires
evaluation of either ln(1/rb) or − ln(rb) as rb tends to an infinite
value.

For general cases (without symmetry), Douglas et al.[23] over-
come the problem of evaluating the potential due to an infinite
length line, as the distance tends to infinity by requiring a hous-
ing at zero potential around the electrode system and using the
method of images. The following method overcomes the problem
without the need to introduce a zero potential housing. P is a
point at a very large finite distance from all the line charges and
the potential at P is chosen to be the reference value from which
all potential differences are determined. Denote the potential dif-
ference between any point Mi and P as Vi, the distance from any
line charge σk to Mi as rki , and the distance from σk to P as rkP. The
contribution of a single line charge σk to Vi is

Vik = σk

2πε0
× ln

(
rkP

rki

)
= c × σk × ln

(
rkP

rki

)
(2)

Therefore, the total potential difference between Mi and P is

Vi =
∑

k

c × σk × ln

(
rkP

rki

)
= c ×

∑
k

σk × (ln(rkP) − ln(rki)) (3)

where
∑

k
indicates the sum over all the line charges used to

replace all the electrodes. Note that if the rki values are obtained
using Pythagoras’ Theorem evaluation of the square root with the
associated increase in computation time and rounding error is
avoided by rewriting Eqn 3 as

Vi = c × 0.5 ×
∑

k

σk × (ln(r2
kP) − ln(r2

ki)) (4)

If there are equal numbers of line charges σk and defined
points Mi, a set of equations with the form of Eqns 3 or 4 may
be developed and solved for the values of the line charges. For
simplicity, only the use of Eqn 3 is described; the derivation using
Eqn 4 is almost identical. Once determined, the line charges and
Eqn 3 may be used to find the potential or the field at any position
of interest.

Using all the defined points, a set of equations, each one of
the form of Eqn 3, is obtained and may be expressed in matrix
notation as

VT = (A + B) σ T (5)

with A the matrix of the terms −c × ln(rki) and B that of terms
c × ln(rkP); VT is a column vector representing the potential
differences at all points Mi and σ T is a column vector representing
the line charges. The expected solution for σ T when point P is at
an infinite distance is one with the sum of all charges (sum of all
the elements of σ T) equal to zero. This zero value can be deduced

by letting P become very large, so that all the values of rkP tend to
the same value rP and writing Eqn 3 as

Vi = c × ln(rP) ×
∑

k

σ k − c ×
∑

k

σ k × ln(rki) (6)

As P tends towards infinity ln(rP) also tends to infinity; since
Vi is finite and all the σk are assumed finite, the expression
c × ln(rP) × ∑

k
σ k must be finite which can only be true if

∑
k

σ k

tends to zero as P tends to infinity. That is, an essential condition
of any solution to Eqn (5) is that the sum of all the line charges
must be zero within the limits of computational accuracy.

When P is at a great but not infinite distance, the sum of the
charges will be small but not zero and Eqn 5 may be re-arranged
as

σ T = A−1(VT − B σ T) (7)

As the position of reference point P is changed, the value of the
terms of B σ T will change. However, all the terms in any column
of B are identical allowing B σ T to be written as VP XT, where XT

is the column matrix whose terms are all unity and VP is a scalar
quantity; Eqn 7 becomes

σ T = A−1(VT − VP XT) (8)

Let σ T
1 = A−1VT and σ T

2 = A−1XT, then for any position P the
solution σ T to Eqn 5 is

σ T = σ 1 − VPσ
T
2 (9)

so that ∑
k

σ k =
∑

k

σ 1,k − VP

∑
k

σ 2,k (10)

The solution of the sum of all charges zero is the one that meets
the requirement that the potential tends to zero as P tends to an
infinite distance and

∑
k

σ k = 0 when

VP =
∑

k

σ 1,k

/∑
k

σ 2,k (11)

Standard simultaneous equation solution methods enable A−1

and hence σ T
1 to be determined by solving σ T

1 = A−1VT. As
σ T

2 = A−1XT with XT a column of unit values, the values of the
elements of matrix σ T

2 are easily determined. Equation 11 is then
used to compute VP and Eqn 9 provides the values of σ T, the
required set of line charges whose sum is zero.

As before, σ T is used to calculate the potentials at any location
relative to the potential at some reference location. Since the
reference location is now at infinite distance from the electrodes,
Eqn 4 cannot be used with σ T to calculate the potential because
the terms c × ln(rP) × ∑

k
σ k are infinite. However, although the

individual terms are infinite, the value of the sum is finite and
equal to VP. Hence, the new equation for calculating potential at
any position becomes

Vi = VP + a × σ T (12)

where a is the vector with elements −c × ln(rki).
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Practical Considerations and Improvements

Solution for the charges is straightforward. Typically, about 40–80
equispaced line charges are used to replace each electrode of
a mass analyser for rapid initial checking of the behaviour of
proposed systems. Those designs that appear to offer the required
performance are investigated further using 100–300 charges in
place of each electrode; very complicated electrode shapes may
require more line charges.

When the charges were obtained using standard numerically
efficient methods, for example Gaussian elimination, it was
frequently found that the equations were ill conditioned. The
values of the charge vector σ T calculated satisfied the original
equations to high precision. However, expected solutions are
ones with the charges varying in a simple slowly changing manner
with movement over an electrode’s surface. Ill-conditioning often
led to solutions where the charges oscillated by very large
amounts, alternate charges were almost equally above and below
the expected values. Some solutions produced charges about
two orders of magnitude larger than the expected values. Even
with these physically unreasonable charge values, the potential
distributions matched the expected ones for systems for which
there is an analytical solution at distances several times the charge
separation from the conductors.

The effect of ill-conditioning is that the simultaneous equations
are either effectively or actually under-determined; consequently,
there are multiple solutions for the charge vector σ T that will
satisfy Eqn 9. Under these circumstances, it is beneficial to use
the singular value decomposition, SVD, method[25] to solve the
equations. SVD factors matrix A into the product of three matrices
A = USWT, in which U and W are square orthonormal matrices
and S is a diagonal matrix containing the singular values. The
pseudo-inverse of A is readily found from this factorisation as
A−1 = WS−1UT. S is a diagonal matrix; its inverse is found
by replacing non-zero elements by their reciprocals and then
transposing the result. The SVD method produces a useful result
even for poorly conditioned equations. The SVD solution is the
one, selected from all possible solutions, that is best in a ‘least
squares sense’. Our solutions by this method are always checked
and so far all have a smoothly varying charge distribution except
for electrodes of complex shape when some oscillations occur
very close to discontinuities in electrode curvature. However, the
effects of such oscillations on the fields at a distance equal to that of
a few charge separations are negligible. Similar effects occur with
other methods of field determination at discontinuities, because
Laplace’s equation defines a field with the second differential
zero. That is, Laplace’s equation is not valid in the infinitely small
region at a discontinuity; numerical computation methods require
finite size intervals and lead to incorrect results in regions close to
discontinuities.

The SVD method is powerful and can be applied to sets of
simultaneous equations with more equations than unknowns, a
property we use later. The disadvantages of the method are that
it is slower than simple methods and requires memory for the
three additional large matrices, although there are techniques
that allow some reduction in memory requirements. Computation
time is variable but is approximately proportional to the cube of
the number of equations; simple methods usually have a time
proportional to the square of this number.

Using the SVD solution method, the potential distribution was
determined for two identical parallel cylindrical conductors with
potentials of equal magnitude but opposite sign. There is an

Figure 2. Potentials (a) at the surface of and (b) on a circle radius 1·02
concentric with one of two parallel circular conductors. The solid line is the
BEM solution and the broken line is the exact analytical value.

analytical solution for the potential distribution of this system that
can be compared with that computed from the set of line charges.
Conductors with radius 1 unit, centres separated by 4 units and
with potentials of +1 V and −1 V were used; initially, each rod
was replaced by 101 equispaced charges. Figure 2(a) shows the
computed potential (solid line) and the exact value (broken line)
moving along the surface of the conductor at a potential of +1 V.
The potential is shown over a distance of three charge separations
either side of the line joining the conductor centres; the position
scale is labelled in terms of the angle between the line joining the
charges and the radial line to the conductor surface.

An obvious feature in Fig. 2(a) is the presence of large ripples
or spikes close to the charge positions where the potential
derived from line charges tends to an infinite value. If the
potential is computed on circles outside and concentric with the
conductor, the spikes change to smooth oscillations that decrease
in amplitude as the radius of the concentric circle is increased.
The spikes also decrease in width as the number of charges is
increased.

The computed potential only equals the conductor potential of
+1 V at the defined points and is greater at all other positions on
the conductor surface. Therefore, the mean conductor potential
predicted is higher than the true value. Hence, when the charges
are on the conductor surface and the values at points Mi are forced
to the conductor potential, the computed fields have values as if
the electrode sizes are slightly larger than their actual sizes. The

J. Mass. Spectrom. 2010, 45, 364–371 Copyright c© 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/jms
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magnitude of this error decreases as the number of charges is
increased. Similar problems can occur with FE and FD methods
because the meshes used replace the electrodes by polygons that
are usually totally external or internal to an electrode, and hence
the polygons are slightly larger or smaller than the electrode.

Figure 2(b) is similar to Fig. 2(a) but shows the potential on the
circle concentric with the conductor at a radius of 1·02 times the
conductor radius; note that the scale of the potential axis has been
expanded in Fig. 2(b). The fluctuations in the potential are already
small, their amplitude is less than ±0·005 of the potential, but the
mean potential is still higher than the analytical result.

Results of the form of Fig. 2 indicate that this initial approach
with line charges at the electrode surface introduces an apparent
overestimate of the electrode size. One alternative is to place
charges within the electrodes instead of at the surface. If a set of
charges can be found, which causes the potentials to be correct
at all points on the electrodes, then, by the Laplace equation
Uniqueness Theorem, these charges would also predict the correct
potential at all locations bounded by the electrodes and the electric
field would also be correctly predicted within the same region.
In practice, computational techniques only allow the potential to
be defined at a finite number of points on the electrode surfaces;
the potential cannot be fixed at other locations on the electrodes.
Care must be taken to ensure that a sufficient number of line
charges are used so that the predicted variation of potential on
the electrode surface is within acceptable limits.

These considerations led to investigations of the effects of
moving the line charges into the conductor in the direction of
the normal to the surface in the manner adopted by Douglas
et al.,[10,23,24] but with much smaller movements. Figure 3 shows
potentials determined at the same positions as in Fig. 2, but the
method of computation has been modified. The chain lines in
Fig. 3 are the potentials using the same defined points as used
for Fig. 2, but the charges have been moved radially inward by an
amount approximately equal to the charge separation. Moving the
line charges inward reduces the amplitude of the oscillations and
the mean potential is closer to, but still greater than, the correct
value.

A simple shift of the charge positions still produces values for the
potentials corresponding to electrodes larger than the true size,
although the error is smaller. The method was further modified
using the feature that simultaneous equation solution using SVD
allows the use of more equations than unknown quantities (over
specification); the shift of charge positions was combined with
the use of additional points Mi. A range of systems may be
envisaged and several were investigated; most produced similar
improvements. The following arrangement is one of the most
simple and allows programmes to be devised to automatically
determine the coordinates for charge positions and the defined
points Mi for many conductor shapes. The number of points Mi

was doubled, that is, there were twice as many defined points as
charges. For circular electrodes, defined points Mi were placed as
before at the conductor surface on radial lines half way between
the radial lines on which the charges were placed. Additional
defined points Mi were placed at the conductor surface on the
same radial lines as the charges (this is possible because the
charges are now inside the electrodes). Adding the extra defined
points produces potential values shown by the solid lines in Fig. 3.
The use of extra points has almost no effect on the amplitude
of the oscillations, but more importantly the mean potential is
now very close to the analytical value. Figure 3b shows a reduced
angular range because some differences are so small that a greatly

Figure 3. Improvement in the computed potentials shown in Fig. 2. The
chain line shows the effect of moving the line charges inside the conductors;
the solid line shows the effect of the further change of doubling the number
of defined points; and the broken line is the exact analytical value.

enlarged potential scale is required for illustration purposes. For
the two conductor system, the agreement between the analytical
solution and computations using line charges was best when the
charges were moved inward by a distance of about 0·6 to 0·8
times the charge separation. For potentials at a radius of about
1·1 times or greater the conductor radius the difference between
model and analytical case is close to the limit of computational
accuracy when 101 line charges were used.

Comparison of results for the behaviour of QMS models using
fields determined by other methods confirmed that movement of
approximately 0·8 times the charge separation usually provided
the best agreement; however, results do not depend strongly on
the value selected. For a range of electrode shapes, it was found
that movement should be in the direction of the normal to the
surface. The value of 0·8 times charge separation and movement
in the normal direction were selected for use when adapting
the method for more complex electrode systems for which the
solution is unknown. Note that as the charges are moved further
inward it becomes increasingly difficult to accurately represent
electrodes whose shapes change rapidly.

Thus, when optimum line charge density values have been
found equipotential surfaces computed using the values closely
match correct ones. However, the computed values do exhibit a
series of small fluctuations (corrugations) running parallel to the
axis of the electrode system. The amplitudes of the fluctuations

www.interscience.wiley.com/journal/jms Copyright c© 2010 John Wiley & Sons, Ltd. J. Mass. Spectrom. 2010, 45, 364–371
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depend on the number and spacing of the line charges and their
positions relative to the surface of the electrodes. The amplitude
of the fluctuations decreases rapidly with movement away from
an electrode; with about 300 line charges representing each
conductor for the two conductor example the amplitude is less
than computational accuracy at a distance of about 0·05 times the
electrode radius.

Application of 2D Field Results to Predict QMS
Filter Behaviour

The BEM using line charges was used to repeat our past
computations of QMS behaviour for which fields were obtained
using FD methods. Results were almost identical but field
computations for similar precision were completed in times more
than an order of magnitude less than using Poisson Superfish and
several orders less than using simple relaxation; the computations
also required less memory. Computation times are affected by
actions of the computer’s operating system, but typically on a
single processor 3 GHz machine for a round rod QMS simple FD
methods required over one hundred hours, Poisson Superfish (an
FD solution that includes over relaxation) took about 8 h, whereas
the 2D BEM took about 40 min.

Furthermore, it is simple to adapt the present approach to
any electrode geometry and we have modelled the behaviour
of QMS systems with hyperbolic sections on the side of the
electrodes facing the QMS axis, circular section electrodes,
elliptical section electrodes and rectangular section electrodes
in various orientations. The method also allows investigation
of electrode displacement, incorrect potentials, any number of
electrodes and any geometry. The only requirement of our field
calculation programs is input files giving the coordinate positions
for each of the line charges and every point Mi plus the electrode
potential at each point Mi. When the electrode shape changes
in a discontinuous manner, for example, at the corner of a
square electrode, smaller separation of the charges and points
Mi is necessary in the region of the sudden change. The method
adopted in such cases is to set the charge separation to a very
small value close to a discontinuity or a region where the curvature
is higher than elsewhere and smoothly increase the separation
moving away from these regions. The inward normal charge
displacement of 0·8 of the local value of the charge separation is
retained resulting in the magnitude of the displacement varying.
For most electrode forms, it is trivial to devise a computer program
that will produce all the required data; even when a program is
not easily prepared manual creation of an input file with the aid
of a calculator and text editor is tedious but not impossible as the
number of values required is usually <1000.

A common method of illustrating the results of a computer
model of QMS performance is to examine the detailed shape of
a mass peak. Figure 4 shows model results for one mass peak
for a QMS constructed with circular section electrodes and the
manufacturing defect of one y-electrode moved inward by an
amount 0·005 × r0. The broken line is our previously published
result using Poisson Superfish to obtain the fields and the solid
line is the result using the BEM approach with discrete infinite
length line charges. The results using Poisson Superfish appear as
if the QMS is constructed with a slightly larger ratio r : r0 than the
results using the BEM. We previously found a similar discrepancy[9]

with Poisson Superfish again behaving as if r : r0 is slightly larger

Figure 4. Computed QMS filter mass peak showing the effect of a displaced
electrode with fields computed using Poisson Superfish (broken) and the
BEM (solid).

when compared with results using fields from a simple, but very
accurate, relaxation method.

A more extreme case is that of a QMS built with flat plate
electrodes, for example, the one described by Pearce and Halsall.[26]

A comparison of our prediction of behaviour with a digitised
version of their results for air with water vapour present is shown
in Fig. 5. To produce Fig. 5 it was necessary to make assumptions
regarding the diameter of the ion source, the proportions of each
species, and the spread in ion energies used by Pearce and Halsall as
these are not stated. However, agreement is good considering that
the fields differ greatly from the conventional form. Experimental
peaks are less well defined than the theoretical ones; in part, this
may be due to response time effects often observed using a chart
recorder to obtain QMS data.

Cylindrically Symmetrical 3D Systems

The technique, including modification of the number and positions
of charges, is readily adapted for systems where the electrode
system has cylindrical symmetry around a central axis as, for
example, in several designs of ion trap. In this case, each electrode
is replaced by a number of circular line charges coaxial with
the system axis. There is no longer a problem computing the
potential at any position due to each charge as the equation for
the potential at any point due to a circular line charge with the
position of zero potential defined as infinity can be evaluated.
However, the derivation of the potential is more complicated than

J. Mass. Spectrom. 2010, 45, 364–371 Copyright c© 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/jms
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Figure 5. Experimental results of Pearce and Halsall (broken) and com-
puted (solid) mass spectra for a QMS filter constructed with flat plate
electrodes.

might be expected; the potential at any point at a distance r from
the axis and distance z from the plane of an infinitesimal thickness
charge ring with a total charge Q and radius R is[27]

V = Q

4πε0

2

π

[
(r + R)2 + z2]−1/2

∫ π
2

0
[1 − k2 sin2 β]−1/2dβ (13)

Equation 13 uses cylindrical coordinates and the azimuthal
coordinate ϕ has been replaced using the substitution

cos ϕ = 2 sin2 β − 1 (14)

Also, Eqn 13 includes an elliptic integral of the first kind with

modulus k2 = 4rR
(r + R)2 + z2 ; this may be evaluated rapidly using

any of the many published routines, for example, Press et al.[25]

Evaluation of the coefficients of the simultaneous equations
similar to those developed for the 2D case is slower than for the
line charge system and the production of final potential values
is also slower. However, potential distribution computation times
are very short compared with alternative techniques which require
a full 3D mesh.

Results for a Cylindrical Ion Trap

The method has been used to obtain the fields to model the
behaviour of cylindrical ion traps. As for the QMS filter, we first
produced fields for the ideal hyperbolic system originally described
by Paul et al.[28] and compared the behaviour of the trap with
these results with the behaviour using fields computed from the
analytical expression. Provided enough charge rings were used,
the results were almost identical. We also computed the fields for
a trap that differs significantly from the ideal, we chose the design
by Chaudhary et al.[3] and Fig. 6 shows the results we obtained
for the spectrum of CHCl3+ assuming that the ions were initially
distributed uniformly throughout the ion trap before the trapping
period. Figure 6 is almost identical with Fig. 11 in Chaudhary
et al.[3]; slight modifications can be produced by adjusting the
assumed ion energy (temperature) and the positions in the trap at
which ions are created. Such modifications are small, the largest
effect is the rate of the extraction process.

Figure 6. Computed QMS filter mass peak showing the effect of a displaced
electrode with fields computed using Poisson Superfish (broken line) and
the BEM (solid line).

Discussion and Conclusions

Once the charges have been determined, they may be used in
several ways by programmes that trace charged particle motion.
Unfortunately, the ideal method of using the charges to compute
the field components directly at each point while tracing each
particle requires excessive computation time. Should extremely
high accuracy be required this method may be used if a high
performance computing service is available.

For linear QMS systems and ion traps of the form used by
Chaudhary et al.,[3] only a single evaluation of the field components
is required as the potential differences between all electrodes are
always in the same fixed ratios. For some more complex ion traps,
it is necessary to compute the fields for the different charge ratios
that occur during operation.

A feature of the solution using the BEM method to determine
a set of charges is that it is possible to compute the electric field
components at any position directly from the charges. For FE and
FD methods, the computation result is the potential distribution
and this must be differentiated to give the field components that
decreases computational accuracy. To avoid computing the field
values at each ion position when tracing its path, we first compute
a grid of values of the electric field components, which is stored
as a data file then read by the program that simulates QMS or ion
trap behaviour. Using a finite difference solution to model round
rod QMS systems,[7] we showed that a square grid in the region
between electrodes with sides of about 1000 equispaced intervals
was adequate provided that this was combined with separate
bilinear interpolations between the grid points each time field
values were required. To ensure accuracy, a grid with slightly more
points was used. For hyperbolic section rods positioned at the
ideal points, linear interpolation of the field components is exact
(the field can also be determined exactly by analytical methods).
For other section electrodes, the interpolation is approximate and
higher order interpolation allows the grid spacing to be increased
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at the expense of higher computation times. We also determined[7]

that for circular section rods the grid should have at least four times
as many points, and probably more, to achieve similar accuracy if
nearest grid point is used instead of interpolation.

We have found that the BEM techniques developed by Read
et al.[18 – 20] provide a very efficient method of determining
electrostatic fields for use when modelling the behaviour of QMS
filters and ion traps. By placing the charges used to model the
conductors at points at a small distance inside the conductors, it
is possible to achieve accuracy that matches other computational
techniques. When the number of points at which the conductor
potential was specified was larger than the number of charges
and the position of the points was carefully chosen, almost exact
mean potential values were obtained for the case of two parallel
conductors. Representing each conductor by 101 line charges
gave almost exact potential values at distances greater than 1·1
times the conductor radius; agreement in regions closer to the
conductors is achieved by increasing the number of charges.

For QMS systems, we were able to reproduce our previous
results obtained using FD techniques for QMS behaviour with
more than an order of magnitude reduction in computation time
and a reduction in the amount of memory required.

For the over specified case of more defined points than charges,
a solution method is required that will find the best solution using
some specified criterion. We found that SVD which provides a best
solution in a least squares sense was successful for all the cases
examined.

The technique may be extended to a full 3D form by replacing
the electrodes by a series of point charges, or areas of surface
charge, or line segments; the form selected is that most appropriate
for the electrode geometry. Our previous results indicate that
to achieve accurate results when modelling QMS filters and
ion traps, a very large set of simultaneous equations must be
solved. However, the size of the set is significantly less than
the number required to achieve similar accuracy using FD or FE
methods. At present, this probably requires computer facilities
not available to many workers but this will not be the case in the
future.
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