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High-fidelity simulations of ion trajectories in miniature ion traps
using the boundary-element method
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In this paper we present numerical modeling results for endcap and linear ion traps, used for experiments at
the National Physical Laboratory in the U.K. and Innsbruck University respectively. The secular frequencies
for 8Sr* and “°Ca* ions were calculated from ion trajectories, simulated using boundary-element and finite-
difference numerical methods. The results were compared against experimental measurements. Both numerical
methods showed high accuracy with boundary-element method being more accurate. Such simulations can be
useful tools for designing new traps and trap arrays. They can also be used for obtaining precise trapping
parameters for desired ion control when no analytical approach is possible as well as for investigating the ion

heating rates due to thermal electronic noise.
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I. INTRODUCTION

The manipulation of laser-cooled, trapped ions within
radio-frequency (rf) traps has been widely studied for atomic
optical frequency standards [1,2]. In the past decade, ion
traps have also been used for quantum information process-
ing. This began with the first general method for the imple-
mentation of quantum-logic gates with ion traps [3] and
hardware realization of the controlled-NOT (CNOT) gate
[4]. Then the multiplexing trap scheme [5] was proposed to
improve the scalability, which is an important issue for quan-
tum computing. This was followed by an architecture for a
large-scale ion-trap quantum computer [6] and a dual linear
trap array for transferring ions from one trap to another to
allow sequential quantum-logic operations to be performed
[7].

More recently, research has turned towards the miniatur-
ization of ion traps and investigation of different electrode
geometries for microfabrication of trap arrays [8,9]. Typi-
cally, the trap electrodes are suggested to be planar since
they are much easier to fabricate than circular and hyperbolic
geometries, especially at such a small sizes. These microtrap
arrays would allow the construction of more complicated
devices for ion trapping at microscopic level, which should
satisfy some of the main requirements for scalable quantum
computing. Such miniaturization techniques can also be used
for the size reduction of miniature quadrupole mass filters
[10]. Quadrupole mass filters are mass analyzers like ion
traps and they can also be constructed to form arrays.

Analytical and numerical potential modeling is crucial for
ion-trap design since static and ponderomotive potentials are
responsible for ion oscillations within the trap. Numerical
modeling of ion-trap electrostatics has already been done by
using different approaches, which include finite-difference
method (FDM) [11] and finite-element method (FEM) [8].
Both FDM and FEM can produce inaccurate potentials and
fields, particularly near the edges of electrodes where the
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results can be highly inaccurate. Such inaccuracy near elec-
trode edges could have an effect on mass spectra in ion-trap
mass spectrometers where ions often approach electrode
edges. High accuracy can also be an important factor for
performance predictions in complicated electrode structures
like trap arrays. Even if small inaccuracies are made in cal-
culating suitable electrode dimensions and distances, the er-
rors can accumulate for multizone trap arrays [12]. This
could later have an effect on ion transfer between different
regions and ion motional heating. For these reasons, the
boundary-element method (BEM) has also been considered
for numerical modeling of quantum-computing ion-traps
[13]. Unlike FEM and FDM, which use the whole electrode
volumes to define grid points, BEM uses only the surface of
electrode volumes since there is no need to consider the ef-
fects of charges below the surface. This enables faster com-
putation and higher accuracy even with small number of
electrode segments. The direct comparison of BEM, FDM,
and FEM has been demonstrated in Cubric et al. [14] for an
ideal spherical analyzer and double cylinder lens using dif-
ferent benchmark tests. These tests included simulations with
commercially available programs cpo (BEM) [15] and SI-
MION (FDM) [16]. All the results showed that BEM had
much smaller error levels than FDM and FEM for modeling
potentials, fields, and particle trajectories.

In Secs. II and III, the ion secular frequencies were cal-
culated from numerically obtained ion trajectories for both
an endcap and circular linear trap. Endcap traps are used for
atomic clocks and optical frequency standards at the Na-
tional Physical Laboratory (NPL) [17]. Circular linear traps
were used for quantum-computing experiments at Innsbruck
[18]. Simulation results were produced from CPO and SIMION
and compared with experimentally measured secular fre-
quencies [19-21]. cPoO produced closer results to measure-
ments than SIMION for both traps. The heating rate due to
Johnson noise was also calculated for the Innsbruck linear
trap.

II. ENDCAP TRAP

The endcap trap, proposed by Schrama er al. [22], is a
different geometric variant of a conventional quadrupole
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FIG. 1. (Color online) Schematic diagram of NPL endcap
trap.

Paul trap and is a nonlinear trap. Figure 1 shows a model of
the endcap trap used at NPL for atomic clocks and frequency
standards experiments with 53Sr* [17] and "'Yb* [23]. A
conventional quadrupole ion trap consists of one ring elec-
trode (the hyperbolic cylinder) to trap ions in the radial di-
rection and two endcap electrodes (hyperbolic plates) for
capturing ions in the axial direction. To produce an ideal
quadrupole field, a rf potential is applied to the ring elec-
trode, while the endcap electrodes are grounded. As it can be
seen from Fig. 1, the NPL endcap trap has two inner endcap
electrodes and two outer endcap electrodes concentric with
inner ones. The outer endcaps are moved back to allow suf-
ficient space for laser access. Equal rf voltages are applied to
the inner endcaps, while small dc voltages can be applied to
the outer endcaps, which are normally grounded. In effect,
the inner endcaps confine ions in the axial (z) direction,
while the outer endcaps prevent ions from escaping in the
radial (x,y) direction. The equipotential lines in zx/zy planes
are shown in Fig. 2.

The mathematical theory of an endcap trap can be de-
scribed through the analysis of a conventional quadrupole
ion trap. Since the electric field in quadrupole ion traps is
rotationally symmetric, we can represent radial axes x and y
with r(=\x?+y?). Thus, the trap potential at any point in a
conventional quadrupole ion trap is given by

FIG. 2. (Color online) Equipotential contours in zx(zy) plane for
the NPL endcap trap.
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Dd(r,z) = #[U+ V cos(Q1)], (1)
Iy + 2Z0
where U and V are the dc voltage and zero-to-peak ac am-
plitude applied to the ring electrode, () is the angular fre-
quency equal to 27f, where f is the frequency of the rf field,
ro is the smallest distance from the trap center to the ring
electrode, and z is the smallest distance from the trap center
to the endcap electrode. For an ideal quadrupole field the
ratio between r( and z; is given by

re=2z2 (2)

The equations of motion for an ion at mass m and charge e
are given by

d’r + [U+Vcos(Qt)]r=0

— cos r=0,

drt  2mz;

d*z e

2 m_z(z)[U+ Vcos(Q1)]z=0. (3)

Ion stability parameters a, and g, are obtained by solving the
Mathieu equation

2

d_gfl; +[a, —2q, cos(2&)]u=0, (4)

where u can be either x, y, or z and é=(wt)/2. The resulting
expressions for a, and ¢, are

1 2eelU
ax’y = — EGZ = —ngﬂz s (5)
1 egeV
Gry==54:=~ 20 (6)

where € is the “efficiency” of the trap. A conventional quad-
rupole ion trap produces an ideal quadrupole field and it has
e=1. It was shown experimentally that the NPL endcap trap
has €=0.63 [23].

An ion is stable within the ion trap if it has a stable tra-
jectory in both radial and axial directions. Another important
trapping parameter is (3,, which depends on g, and ¢, and
0<B,<1 must hold. In order to obtain the exact value of
B,, a continued fraction in terms of g, and g, must be used.
A simpler expression for B, is the Dehmelt approximation
given by [24]

B =la,+(q22)]", (7)

which is only valid for ¢, ,<0.2 and ¢, <0.4. Because of its

trap parameters (e.g., rf voltages), the NPL endcap has larger

values of g, and the Dehmelt approximation cannot be used.

Therefore, the fourth-order approximation for S, should be
(a,~ g, (5a,+7)q,

used [25],
172
ﬁ”= |:a”_ 2(au_ 1)2_qi - 32(au_ 1)3(au_4):| . (8)

Ton motion in the rf field consists of secular motion (slow
oscillations) and micromotion (fast oscillations). In an end-
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TABLE 1. Experimental and numerical results for secular frequencies of a 851" jon, trapped within the NPL endcap trap.

Ist set 2nd set 3rd set 4th set Sth set

199 V rms 221 Vrms 245 V rms 274 V rms 304 V rms
Secular 15.955 MHz 15.948 MHz 15.936 MHz 15.925 MHz 15.91 MHz
frequencies Description 2.12 Vdc 2.55 Vdc 331 Vdc 2.39 Vdc 2.38 Vdc
/2 Experiment 1.395 MHz 1.59 MHz 1.8 MHz 1.98 MHz 2.23 MHz
w,/2m Experiment 2.985 MHz 3.36 MHz 3.795 MHz 4.34 MHz 5.07 MHz
/2 BEM 1.403 MHz 1.596 MHz 1.789 MHz 1.98 MHz 2.227 MHz
w,/2m BEM 2.939 MHz 3.265 MHz 3.767 MHz 4.281 MHz 4.96 MHz
/2 FDM 1.441 MHz 1.606 MHz 1.791 MHz 1.988 MHz 2.213 MHz
w,/2m FDM 2.879 MHz 3.247 MHz 3.668 MHz 4.261 MHz 4.946 MHz

cap trap, the ion experiences micromotion in all three direc-
tions. Micromotion can cause adverse effects for laser-cooled
ions, such as significant second-order Doppler shifts when
high accuracy is investigated and limited confinement time
in the absence of cooling. This is due to the increase of ion
motional heating. In experiments, micromotion is normally
minimized with the fluorescence modulation technique [26]
and compensation electrodes, which are used to move the ion
towards the trap center where the energy of micromotion is
the lowest. The NPL endcap trap has two compensation elec-
trodes orthogonal to each other and to the trap electrodes,
which reduce micromotion in radial direction, while small dc
voltages can be applied to outer endcap electrodes for the
reduction of micromotion in the axial direction. The ion mo-
tional frequencies are normally called secular frequencies,
since micromotion is very small compared to secular motion
and its influence can be neglected for high frequencies. The
expression for angular secular frequencies is an algebraic
progression and it is given by [24]
Bu

le:(ni?)Q, 0sn< o, 9)
where n represents the frequency order. The angular secular
frequency at n=0 is

(10)

and it is called the fundamental frequency, having the lowest
value of all orders and the highest power spectrum. The ex-
pressions for w,, and w, can be obtained by using the ap-
proximation for 8, from Eq. (8) and placing it into Eq. (10).
The inner endcap dc voltage U is always set to zero, so that
a,=0 for the NPL endcap trap and only g, is necessary for
calculations of S,,.

To model ion traps accurately, all the trap parameters need
to be explicitly specified. This includes both trap dimensions
and driving voltages. The NPL endcap trap consists of two
inner and two outer endcap electrodes made from tantalum,
which have an alumina insulation spacer between them. The
inner encaps have 0.5 mm diameter and a length much larger
than their diameter (approximately 16 mm). The outer end-
caps have 1 mm inner diameter and 2 mm outer diameter.

The inner endcaps are separated from each other by
0.56 mm, which is equal to 2z,. The outer endcaps are sepa-
rated by 1 mm and angled at 45° with respect to the z axis,
which is also called the trap axis. In the simulations, the trap
was driven with different voltages and at different frequen-
cies corresponding to a few sets of experiments performed at
NPL. A ®8Sr* jon was injected at the trap center at 0.05 eV
kinetic energy with equal initial velocities in all directions
and allowed to oscillate for 1 ms.

Table I shows the numerical and experimental values for
secular frequencies of a 33Sr* ion for five different sets of
experiments at NPL. In all the experiments a single laser-
cooled ion was confined near the trap center. Each set con-
tains different trapping parameters. These include the rf volt-
ages and driving frequencies applied to the inner endcaps
and small dc voltages applied to one outer endcap, while the
other one remains grounded. The inner endcap dc voltages
are equal to zero. The secular frequencies for an endcap trap
cannot be obtained analytically, as for a conventional quad-
rupole ion trap using Eq. (9). This is because an endcap trap
does not have an ideal quadrupole field and e=1. Thus, the
value of its efficiency can only be estimated experimentally
or numerically. The secular frequencies were calculated from
ion trajectories produced by cPO (BEM) and SIMION (FDM),
and compared with exact experimental measurements taken
from Ref. [19]. The measurement technique used at NPL is
described in Ref. [27], where radial and axial secular fre-
quencies can be seen from the experimental sideband spec-
trum.

Before modeling the NPL endcap trap, BEM and FDM
simulations were performed on a conventional quadrupole
ion trap to compare their results against theory [see Eq. (1)].
These simulations showed that BEM was on average 1%
more accurate than FDM for basic potential and field calcu-
lations near the trap center. Table I also shows that on aver-
age BEM produced closer secular frequencies to the mea-
surements for the NPL endcap trap than the ones FDM
generated. Obviously this is a basic comparison and it would
require more experimental sets and simulations to provide a
definitive picture. It can be seen from the table that the radial
frequency is smaller than the axial frequency, which is al-
ways the case for an endcap trap since the rf field is stronger
in the axial direction due to the rf-driven inner endcaps.

012326-3



BRKIC e al.

FIG. 3. (Color online) Schematic diagram of Innsbruck linear
trap with circular electrodes.

From the secular frequencies, the dc component of the
electric quadrupole field gradient can be calculated, which
can be used to determine the quadrupole moment of an ion
[17]. This can be useful when designing traps for atomic
clocks and frequency standards with different ions.

III. LINEAR TRAP

A conventional linear Paul trap consists of a hyperbolic-
rod quadrupole mass filter with prefilter and postfilter of the
same shapes, which represent endcap electrodes. The main
filter traps ions radially with rf voltages, while the prefilter
and postfilter confine them axially with dc voltages. Because
of the difficulty in the manufacture of hyperbolic electrodes,
other geometric shapes are used for linear traps, such as cir-
cular rod [18], blade shaped [28], rectilinear [29], and planar
[9], which have all found applications in different areas.

This section will investigate only linear traps that are used
for quantum computation. Figure 3 shows the circular-rod
linear trap, which represents the “old” trap model used for
quantum computing with “0Ca* jons at Innsbruck University.
It has four circular rods with two ring-shaped electrodes
placed around the ends of the quadrupole rods. Ions are ra-
dially trapped with rf voltages applied to the quadrupole
rods, while axially they are confined by dc voltages applied
to the endcap rings. In linear traps used for quantum com-
puting one pair of the two diagonally opposing rf electrodes
is grounded, while in linear trap mass spectrometers, the two
pairs of diagonal rods have equal voltage values, but oppo-
site in sign. The ratio between the rod thickness and diagonal
rod distance is lower for quantum computing traps than for
mass spectrometry traps. This is because quantum computing
traps do not require ion filtering and they need larger space
between the electrodes to allow access for laser beams. Also
there is no dc voltage applied to the rf electrodes, since again
ions do not need to be filtered, but only to remain trapped.

Linear trap theory is based on quadrupole mass filter
theory. The electric fields inside a linear trap have compo-
nents along the trap axis (z direction) and radial axes (x and
y directions). Figure 4 shows the equipotential lines in zx/zy
planes for the Innsbruck linear trap. The trap potential at any
point in the radial direction is given by

2_ .2
‘b(x,y )= = zy
To

[U+ Vcos(Qi)], (11)

where U and V are the dc voltage and zero-to-peak ac
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FIG. 4. (Color online) Equipotential contours in zx/zy plane for
the Innsbruck circular-rod linear trap.

amplitude applied to the quadrupole rods, €} is the angular
frequency equal to 27f, where f is the frequency of the
applied rf field, and r is the smallest distance from the quad-
rupole center to the surface of the electrodes. Therefore, the
equations of motion for an ion at mass m and charge e can be
derived,

d*x  2e

yl + m—r(z)[U+ Vcos(Q1)]x =0,

d*y  2e [U+Vcos(Qn)]y =0

— _— —[U+V cos =0,

ar mr% g
d’z
0. 12
7 (12)

Ton stability parameters a, and ¢, are obtained by solving the
Mathieu equation given in Eq. (4). The resulting expressions
for a, and ¢, are

1 4exU,

ax,y == Eaz = mQZZ(Z), (13)
4eV
qdx=—4y= ez 2 qz=07 (14)
mQrg

where « is the “geometric factor” [26] which must be esti-
mated, U, is the dc voltage applied to both endcap rings, and
Zp 1s the smallest distance from the trap center to the endcap
electrode. In practice the geometric factor describes the in-
tensity of the static dc field in the axial direction. Its value
depends on the change of trap dimensions and the static dc
voltages applied to the endcap electrodes.

In theory, a rf field in linear traps has no components in
the axial direction. However, when a whole three-
dimensional (3D) structure is modeled numerically, a small
presence of the rf field can be seen in the axial direction.
This means that micromotion also exists in the axial direc-
tion, but it is much smaller than in the radial. The expres-
sions for radial and secular frequencies can be obtained by
using the approximation for 8, from Eq. (7) and substituting
it into Eq. (10). Since |a, | <|q,,| for the Innsbruck linear
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trap, the formula for the radial angular frequency can be
approximated by

2eV

W, =T, (15)
” V’Zmﬂré

Since g,=0, the expression for the axial angular frequency is

given by
2ekU,
W=\ —>5. (16)
mzo

The Innsbruck linear trap consists of four stainless steel
cylindrical electrodes, forming a quadrupole, and two ring-
shaped electrodes at the ends. The electrodes are isolated by
MACOR spacers. The quadrupole rods have 0.6 mm diam-
eters with their diagonal separation (2r,) equal to 2.4 mm.
The endcap rings are 6 mm in diameter and the distance
between them (2z,) is 10 mm. In the simulation, the trap was
driven with 1000 V peak at 18 MHz applied to one pair of rf
electrodes with other pair grounded and 2000 V applied to
the endcap dc rings. A *°Ca* ion was injected at the trap
center at 1 eV kinetic energy with equal initial velocities in
all directions and allowed to oscillate for 1 ms.

As for an endcap trap, the secular frequencies for a linear
trap cannot be obtained analytically because of the geometric
factor involved. Figure 5 shows the plots of *°Ca* ion mo-
tional frequencies generated by BEM for given Innsbruck
linear trap parameters. The power spectrum plot for axial
frequencies has much less noise than the radial plot. This is
because of very small presence of a rf field in axial direction.
The experimental measurements gave o, ,/27=1.400 MHz
and w,/27=700 kHz, which can be clearly seen from the
full sideband spectrum given in Refs. [18,21]. BEM pro-
duced w,/2m= 1.396 MHz and w,/2m7=702 kHz, while
FDM produced o, ,/27=1.507 MHz and w,/27=696 kHz.
The BEM results are again closer to the measurements than
FDM results, especially for the radial frequency where the
BEM showed significantly higher accuracy. It can be seen
that the radial frequency is larger than the axial, which is
normally the case in linear traps.

4500 5000

The numerical prediction of the secular frequencies can
be used for estimating the heating rates when designing new
traps. Ion motional heating is an important issue for quantum
computation. It can lead to decoherence of superposition
states and increase the ion separation time in multiplexed
traps, which would limit the speed of quantum-logic opera-
tions [5,7]. The main causes of heating of ion motional
modes include Johnson noise, which can happen due to the
resistance of the trap electrodes or external circuits, and fluc-
tuating patch potentials, which are influenced by the noise
from microscopic electrode regions. The heating rate due to
resistance of trap electrodes is given by [30]

ho,=—7", (17)

where 7, is the average vibrational quantum number of an
ion for a given direction, 7 is the trap operation temperature
(usually T=300 K), z is the distance of the ion from the
conductive electrode, and R is the electrode resistance, which
can be calculated using resistivity of electrode material
(p=7.5%107% Q cm for stainless steel). Thus, the Innsbruck
trap heating rate for radial modes due to Johnson noise is
approximately 1 quantum/670 ms (using the BEM generated
secular frequency). This is obviously an underestimate for
the heating rate because of the other influential factors pre-
viously mentioned. Ion motional heating can especially be
increased due to fluctuating potentials on electrode surfaces.
However, it has been demonstrated that smooth and pure
electrode surfaces can significantly minimize the heating rate
[7]. If electrodes were made smooth enough, then the calcu-
lation of Johnson noise heating (inevitably present) will give
a better estimate for the actual ion heating.

IV. CONCLUSIONS

This paper has shown simulation results of ion secular
frequencies for two different ion traps using the boundary-
element method and finite-difference method. The results
were compared with experimental measurements in each
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case and the boundary-element method proved to be more
accurate than the finite-difference method. We suggest that
the boundary-element method should be used for accurate
modeling of ion-trap electrostatics and particle trajectories.
This method should especially be useful when used in the
design of miniature trap arrays that could potentially be used
for scalable quantum computers. Such high-fidelity simula-
tions would help to prevent design errors, which could accu-
mulate for complicated multizone linear traps. Ion motional
heating is also of interest and the heating rate due to Johnson
noise can be calculated from numerically obtained secular
frequencies. The relative permittivity of the insulating mate-

PHYSICAL REVIEW A 73, 012326 (2006)

rials can be included in future simulations to check whether
it has effects on ion secular frequencies and motional heat-
ing.

For the purpose of quantum computation, a logical next
step could be the numerical (using space-charge support) and
analytical modeling of two or more ions oscillating simulta-
neously in a trap. Such modeling would include all the mu-
tual interactions and quantum effects that ions experience
during their oscillations enabling the prediction of superpo-
sition of motional states. This could lead to an ion-trap
CNOT gate simulator, which might be further expanded to
simulate quantum algorithms.
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