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Abstract 

Ancient bone collagen retains valuable information. Radiocarbon dating, thermal 

dating, species identification, cladistics analyses, and paleodietary reconstruction efforts 

all use bone collagen from ancient samples. Experimentally derived models of the 

temperature-dependent collagen half-life and thus of collagen’s expected shelf life under 

optimum preservation conditions currently stand at odds with literature reports of 

collagen remnants in bones with great apparent ages. These issues cause debate about 

bone collagen longevity. The situation highlights a need to better understand bone 

collagen preservation conditions and thus to apply new analytical tools to ancient and 

modern bone samples. In response, this study applies established techniques to ancient 

bone for the first time. Appropriate samples of ancient bone were first collected and 

catalogued. They include specimens ranging from Medieval to Paleozoic settings and 

involve partnerships with six permanent repositories.   

This thesis describes the novel application of second-harmonic generation (SHG) 

imaging, an established technique in biomedical science, to ancient bone. In this study, 

four separate and independent techniques confirmed that SHG reliably detects trace 

amounts of collagen protein in certain Medieval and Ice Age bone samples. Additional 

results indicate that SHG detects faint traces of collagen in unexpectedly old bone 

samples, including dinosaur bones. The technique demonstrated a high degree of 

sensitivity to small amounts of collagen, plus the potential to explore the 

micromorphology of collagen decay in bone and other collagenous tissues.  

The second novel application was Fourier-transform infrared (FTIR) spectroscopy. 

Recent studies demonstrated its usefulness for bone collagen content estimates in forensic 

analyses of bone remains. This study extended its application to Medieval, Ice Age, 

Cretaceous, Jurassic, and Devonian samples and found a general trend of diminishing 
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collagen signal with older bones. FTIR was also used for the first time to assess bone 

collagen integrity in an artificial decay experiment. In addition, the applicability of 

Raman spectroscopy to ancient bone was explored.  

Accelerator mass spectrometry (AMS) was also used to measure stable and unstable 

carbon ratios in many of the same ancient bone samples used above. AMS 
13

C results 

brought forth two main conclusions. They confirmed the accuracy of preliminary results 

obtained using a recently developed portable quadrupole mass spectrometer (QMS) to 

detect stable isotopes including 
13

C and 
12

C ratios from the bioapatite fraction of 

Medieval bone. They also confirm for the first time a co-occurrence of primary (i.e., 

original to the organism) isotopic signatures in fossil bones with primary organic 

signatures. Analysis of published Cretaceous vertebrate fossils with biological stable 

isotope ratios matched this co-occurrence. Finally, the first AMS 
14

C results from 

Cretaceous bone collagen are presented. 
14

C results discriminated between modern, 

medieval, Roman era, and ice age, but not between Cretaceous and Jurassic time frames. 

Overall results suggest that the application of novel techniques like SHG will help detect 

and further characterise ancient bone collagen. Also, low cost, nearly nondestructive tools 

like FTIR and QMS show promise to aid continued discoveries of original isotope ratios 

and biological remnants like bone collagen in fossils from widening geographic and 

geological ranges.  
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Bone structure 

This thesis describes new uses of established techniques, and progress on 

instrumentation development, to examine ancient bone proteins. A proper understanding 

of ancient bone begins with structure. Bone is the defining connective tissue of all 

vertebrates. It consists of living cells such as osteocytes and their interconnected dendritic 

processes, blood vessels and blood cells, plus extensive extracellular matrix. Precisely 

arranged proteins combine with calcium hydroxyapatite (“bioapatite” or “apatite”) to 

account for the rigidity and flexibility of bone. Overall, about 40% of the dry weight of 

bone is organic and 60% inorganic
1
.  

The collagen family of proteins comprises 90% the total organics of bone. It contains 

a high content of glycine, proline, and hydroxyproline, usually in a repeated -gly-pro-

hypro-gly- pattern
2
. This arrangement of relatively small residues permits the coiled 

architecture of each subunit. The flexibility of this fibrous biomolecule provides bone its 

resilience, while bone rigid structure of the biomineral components provides compressive 

resistance
3
. Less abundant bone matrix proteins include osteocalcin, a protein hormone 

involved in signaling bone tissue growth via osteoblast activity. 

Collagen occurs in over a dozen types, each suited to a structural requirement of a 

particular tissue or organ. Most types are non-fibrillar. The more common fibrillar types 

take on long, rope-like molecular conformations in tough connective tissue like bone, and 

include Types I, II, III, V, and X. Type I collagen fibres are the most abundant in skin, 

tendon, vessels, organ cortices, and fresh bone, comprise over 90% of all collagens in the 

human body (and is a characteristic feature of vertebrates in general), and range from 0.5-

3µm thick
4
. One fibre consists of about a dozen packaged fibrils, each ranging from 10-

300nm. One fibril contains many tropocollagen assemblies, each made of three parallel, 

crosslinked, triple helical subunits. Each Type I tropocollagen typically consists of two 
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identical strands (α1) hydrogen-bonded and cross-linked to a third chemically different 

strand (α2). During bone construction, osteoblasts generate and interweave bioapatite 

crystals within and around exported collagen fibres, illustrated in Fig. 1.1. Bone 

bioapatite crystallites take the shape of flattened rods of roughly 30Å X 400Å
5
. 

Collagen’s abundance, insolubility in water and hence longevity, and ease of separation 

from bone by acid dissolution of biominerals have made it an ideal bone component for 

radiocarbon and stable isotope analysis
6
 as well as protein sequencing for species 

identification in archaeological settings
7
. 

 

Figure 1.1 | Bone biomineral and collagenous microstructure. 

 

Bone diagenesis 

Models of bone decay post mortem that assume an absence of microbial 

biodegradation suggest that tropocollagen helices undergo chemical reactions including 

glycation, oxidation and hydrolysis as they decay into smaller components (e.g., amino 

acids, carbon dioxide, ammonia, etc.) that then disperse. Collagen fibres fray from either 

end, where exposure favors reactivity. In principle, the tight packing of adjacent apatite 

crystals hinders reactivity and preserves bone collagen
8
. Collagen fibers can interact with 

surrounding material, but do so under different conditions than bioapatite. Under 

conditions where collagen decays first, bioapatite crystals quickly disorganize and bone 
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quickly turns to dust. Similarly, if bioapatite undergoes dissolution before collagen 

decays, then its dispersal exposes collagen more readily to chemical reactants, again 

hastening whole bone decay. Ideal conditions for bone preservation thus dampen both the 

organic and inorganic decay processes. These conditions include a constant low 

temperature, a uniform, low hydration level with restricted percolation, and near-neutral 

pH. Extremes in pH react with, help solubilize, and thus hasten collagen decay
9
. 

Therefore, each broad setting, and even microsite variations that can occur within feet of 

one another in a single setting, brings its unique set of chemical, thermal, mineral, 

biological, pH and other conditions to bear on the complicated array of possible 

diagenetic fates for bone and thus bone collagen. 

Field and lab observations suggest that upon deposition, any bone collagen that 

escapes scavenging and biodegradation decays rapidly at first, then slows to a more linear 

decay regime
10

. Such studies model bone collagen decay using ideal conditions, such as 

near-neutral pH, near sterility, and constant hydration. Even under less than ideal 

conditions, archaeological bone can still retain sufficient collagen for radiocarbon dating, 

stable isotope analysis, thermal (collagen) dating
9
, and even species identification via 

collagen sequencing. However, paleontological (fossil) bone does not often retain 

sufficient collagen to relay any of those types of biological information. Recent research 

reviewed in detail below shows a surging interest in how long bone and bone collagen 

can possibly last, how long it has actually lasted, and what conditions underlie collagen 

longevity. 

 

Collagen decay 

The decay rate of bone collagen under ideal conditions has been well characterised 

experimentally. Its energy of activation (Ea) of 173 kJ/mol equates to a half-life of 130 ka 
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at 7.5°C
11,12

. Typical experiments use a two-step strategy to determine the decay rates of 

various proteins, including collagen. First, elevated temperatures are used to accelerate 

bone collagen decay, typically in a sealed glass vial. Three different experimental 

temperatures are required to construct an Arrhenius plot. Molecular decay is measured by 

various means including protein extraction and weighing, protein extraction and SDS-

PAGE analysis, or protein content estimation using immunofluorescence. Each technique 

essentially delivers a fraction or percent protein remaining at certain time points during 

the typically four to eight week-long experiment. The resulting data are then plotted as 

the natural log of the percent remaining (or concentration of reactant) versus time in days 

for each of three temperatures. The slopes, obtained via linear regression analysis, are 

then used to calculate decay constants (k) for each temperature, using: k = -[slope].  

The three resulting k values, one for each of three tested temperatures, are then 

plotted in a second logarithmic curve, the Arrhenius plot. It shows the natural log of each 

decay constant, ln(k) versus the inverse temperature, 1/T. The slope of the line of best fit 

through those three points is used to obtain the two unknown variables in the Arrhenius 

equation, namely Ea and A. Ea is the activation energy, and A is a pre-exponential factor 

unique to each reaction and relates in part to frequency of collisions between reactants. 

The slope of the Arrhenius plot equals –Ea/R, with R being the gas constant, 8.31446 

J/(mol∙K). The y-intercept of the slope from that same Arrhenius plot equals ln(A). 

Finally, with all variables of the Arrhenius known, a form of the Arrhenius equation is 

then solved algebraically for the rate constant k at any given temperature. 

The Arrhenius equation relates chemical reaction rates to energy (in this case 

thermal) of the system. In the Arrhenius equation,  

 

k = Ae-Ea/(RT)     Equation 1 
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k is the rate constant, T is the absolute temperature, A is an experimentally determined 

constant related to total number of molecular collisions as noted above. The other 

variables are described above. The expression e
-Ea/(RT)

 estimates the fraction of collisions 

leading to chemical reactions, where e= 2.718 (the base of natural logarithms).  

The decay constant k for any reaction, like the decay of collagen, that undergoes a 

first order logarithmic decay and is unique to a given temperature can be expressed in 

terms of a half-life using:  

 

t½ = ln(2)/k     Equation 2 

 

The activation energy Ea for the decay of collagen, and biomolecules in general, remains 

constant, whereas the rate constant (and hence half-life) varies with temperature. An 

average annual temperature for the history of a buried bone is substituted for T in the 

Arrhenius equation (Equation 1) in order to calculate a decay rate estimate for that 

temperature. Buckley et al (2008) used 7.5°C, the average annual temperature of regions 

in Montana where collagen has been recovered and sequenced from dinosaur bone
11

. 

However, those dinosaur-containing sediments captured swamp-like flora and fauna that 

represent higher past temperatures
13

. Colder temperatures afford fewer molecular 

collisions, which equate to fewer chemical reactions and higher fidelity protein 

preservation.  

Collagen decay rate experimental results build a temporal expectation that restricts 

bone collagen to archaeological time frames, yet many reports of collagen and other 

proteins in older-than-archaeological samples have sprinkled the paleontological literature 

for decades. Tension between the expectation of lability and observations of longevity has 

fueled steady debate over the veracity of original biochemistry remnants in fossils
14,15

.  
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Even strictly archaeological samples display consistent disparity between thermal age 

and standard age assignments. The molecular integrity of bone collagen in a sample is 

compared to a collagen decay curve to determine its thermal age. In one study, Buckley 

and Collins determined thermal (collagen-based) ages for 65 archaeologically dated 

bones
9
. Every one showed a higher standard age than thermal age. The standard ages in 

their samples (range 2,500a to 1,500,000a) exceeded collagen content-based ages (range 

1,584a to 144,862a) by two to tenfold. Original bone collagen in samples bearing even 

older standard ages highlights the mystery that underlies this disparity. By “original” is 

meant that the biochemical or even whole tissue under investigation came from the 

fossilized animal and not some contaminant like recent microbial growth. Hence, “The 

idea that endogenous molecules can be preserved over geological time periods is still 

controversial”
16

. Recent reports have sparked new interest in modes of collagen 

preservation and in technologies with very high collagen detection sensitivity. This thesis 

explores such techniques for their potential to extend the limits of protein detection in 

very ancient bone. Additional data thus obtained could add new insights to questions 

related to this controversy, such as the expected longevity of particular proteins in 

particular settings. 

The main mechanisms proposed to extend protein preservation beyond experimental 

expectations centre around mineral interactions. Collins et al (2000)
17

 found that close 

association of osteocalcin—a common bone protein—with bone mineral enhances its 

preservation potential far beyond that in aqueous solution. However, proteins in aqueous 

solution do not match any realistic burial and long-term protein survival scenarios. The 

mere observation that osteocalcin lasts longer when surrounded by minerals rather than 

water does not necessarily justify the conclusion that the decay model predicts or even 

suggests that the longevity of mineral-associated osteocalcin could enable it to persist in 



8 
 

fossil bone. In other words, mineral association may explain how proteins last longer in 

bone than in a watery ‘soup’, but falls short of predicting that original proteins in fossils 

should remain detectable until today.  

Most of the preceding considerations are based on experimentally derived results 

coupled with reasonable deduction, but they remain theoretical enough for Collins et al 

(2002) to admit that “Biomolecular deterioration still remains a largely unexplored aspect 

of bone diagenesis”
6
. Even the most recalcitrant proteins have shelf-lives

18
, so their 

descriptions in Mesozoic strata remain enigmatic
19

. The research described in this thesis 

focuses on technologies and applications that have arisen since that was written, and that 

have the potential to probe this biomolecular deterioration from new angles.  

 

Original biochemistry in archaeological and Cenozoic specimens 

A survey of older techniques for bone protein characterization sets a backdrop 

against which the potential virtues of new techniques can be better appreciated. 

Historically, bone proteins from archaeological remains have been targeted much more 

often than those from paleontological remains. Subfossil bone proteins can vary from 

abundant and easily detectable to barely present, and even absent, from archaeological 

settings. These observations, coupled with short protein lifespans relative to geologic 

time, have dissuaded investigations of bone proteins from more deeply buried fossils, for 

example from Mesozoic or Paleozoic Erathems. Thus, archaeological and even Upper 

Cenozoic bone samples often harbor abundant and dense bone proteins, all time-altered to 

one degree or another. Such high abundances lend themselves to analysis by crude and 

inefficient techniques like protein extraction and weighing on an analytical balance. More 

sensitive technologies are required to detect faint and highly degraded protein traces that 

may persist in certain rare fossil samples.  
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Classic techniques like immunohistochemistry have been used to identify such 

proteins as haemoglobin
20

 and albumin
21

 in archaeological bone. This technique takes 

advantage of antibody-antigen specific molecular interactions. Antibodies of targeted 

biochemicals are added to demineralized bone tissue. If the target biochemical is present, 

antibody binding takes place. Unbound antibodies are washed off. Fluorescent markers 

are then applied. They attach to the exposed end of the antigen-bound antibody 

molecules, and excess markers are washed off. Micrographs record fluorescence of the 

biomolecular in situ patterns.  

Decades of radiocarbon dating have supplied, perhaps unwittingly for some, a robust 

and longstanding verification of the presence of endogenous protein in ancient bone. 

Collagen is routinely extracted for radiocarbon and other analyses, typically using some 

variation of the Arslenov method, discussed in a later chapter on radiocarbon isotope 

analysis. Briefly, extraction involves dissolution and removal of bone mineral in acid, 

followed by gelatinisation of collagen via heating under a weak acid. Researchers require 

analytical evidence that the collagen extracted from archaeological bone has little or no 

contamination in order for radiocarbon age dates to be considered valid. Therefore, 

rigorous and repeated tests have demonstrated the reliability of extracting primary, as 

opposed to external secondary or exogenous, sourcing of bone collagen. The thousands of 

published radiocarbon ages obtained from extraction of proteins (collagen) from 

mineralised tissues including shell, tooth, and bone attest to the general abundance of 

proteinaceous material in archaeological sites. 

In addition, the presence of bone collagen is regularly confirmed by protein 

sequencing of archaeological samples. This process begins with protein extraction 

protocols similar to those used in preparation for radiocarbon dating. Protein extracts are 

purified then digested with a selected enzyme (a protease) known to preferentially 
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catalyse protein backbone hydrolysis at specific amino acid sites. The resultant mixture is 

separated and mass analysed typically by an integrated gas chromatography/ tandem mass 

spectrometry (GC/MS-MS) device. The measured molecular masses from the digested 

extract can then be compared with known collagen fragments so that original collagen 

sequences can be digitally reconstructed.  

A single Siberian mammoth bone yielded 126 unique, partly intact protein types, 

detected by tandem mass spectroscopy. This exemplifies many Cenozoic proteins 

including the ‘gold standard’ technique of sequencing
22

. This one discovery contains far 

more unique protein remnants than the total collection of biochemicals found in the entire 

Mesozoic so far sampled, illustrating both the potential abundance of original 

biochemistry in Cenozoic fossils, and the disappearance of that biochemistry due to 

degradation over time. Another more recent report describes the oldest original animal 

lipid. The pygidial (preening) gland from an extinct bird captured in Germany’s Messel 

Shale preserved still-yellow oil, now waxy
23

. Overall, the abundance of published protein 

sequences from recent fossil and subfossil specimens attests again to the general 

abundance of protein remnants in archaeological and even Cenozoic settings.   

These and other methods clearly show that organic archaeological remains retain 

abundant endogenous organics including proteins like collagen. This fact is highlighted in 

research in this thesis. Some of the same technologies used to reaffirm primary collagen 

in archaeological bone are herein applied to older bone samples. This strategy aims to 

explore how well and how far those technologies can extend into older bones with 

presumably much less or even no collagen, and to assess by comparison the relative 

protein detection sensitivity of various techniques.  

Few would question the reality of collagen in archaeological bones of high quality 

preservation. However, reports of protein remnants including collagen in paleontological 
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bone samples are met with widespread disapproval in certain circles. As noted in the 

abstract above, the subject of bone collagen longevity and persistence remains 

contentious on the basis of collagen decay model projections
11

. 

 

Original biochemicals and intact tissues from Mesozoic specimens 

The vast majority of fossiliferous remnants of soft tissues such as skin, internal 

organs, body outlines, and nervous tissue occur in the fossil record as mineralisation that 

records only the shape, but no original biochemistry. However, original biochemicals do 

occur (rarely) in Mesozoic and even more rarely in Paleozoic fossil remains, as Table 1.1 

documents below (p. 21).  

The phrases “soft tissue,” and “soft tissue preservation” occur throughout 

paleontological literature, but in most cases authors intend to convey “mineralised tissue.” 

Often, soft parts preserve via phosphatization, sulphurization, pyritisation, or 

kerogenisation
24

. Authors also note preservation by silicification , carbonisation, 

phyllosilicate metamorphism, or apatite permineralisation
24

. Except for kerogenisation 

and carbonisation, these modes describe minerals that replace the original tissue. The 

resulting preservation records body organ outlines in whitish, reddish, and golden colors. 

These and other minerals can co-mingle in the same fossil, depending on mineral 

availability and complicated internal chemistries likely determined very early in 

diagenesis. More often than not, authors do not plainly distinguish “mineralised” versus 

“original” when they refer to soft tissue in fossils. In specimens with mineralised soft 

tissue, the minerals represent chemical transformations of the original, labile biochemistry 

into a more resistant material. Mineralisation can occur by hydrothermal action or 

groundwater precipitation, and even by bacterial degradation of organic components. 

Partial biodegradation blankets each organ with acid, which causes preferential 
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precipitation of nearby minerals on the order of weeks to months in laboratory 

experiments
25

. Extreme care is therefore required in sifting literature for those rare 

instances of original biochemistry. 

These common mineralisation modes of soft animal part preservation do preserve 

gross anatomy
26,27

, and in some cases microanatomy
28

, but none preserve as much 

biological or taphonomic information as do primary protein sequences, isotope analyses 

of primary biominerals, or original organically preserved residual or whole tissues. This 

thesis focuses on original biochemistry. In addition to suggesting how future studies 

might apply new technologies to test diagenetic scenarios, an even more significant task 

is to  test whether or not new applications of established technologies or altogether new 

technologies can increase protein detection sensitivity and efficiency enough to help 

resolve current controversy on bone collagen (and by extension proteins in general) 

longevity.  

Despite the expected rarity of original biochemistry in fossils, a diligent literature 

search yields dozens of reports. Rather than write a book-length narrative that 

summarizes each published description of original biochemistry or preserved whole tissue 

fossil, selected examples from the longer list are described next, followed by a full 

compilation in Table 1.1, p. 21.  

Stunningly, soft and pliable tissue was described in a Tyrannosaurus rex femur in 

2005
29

, shown in Fig. 1.2, with a follow-up report that identified specific biochemicals
30

. 

The specimen contained whole osteocytes, whole epithelial and erythrocyte cell-like 

elements, and extracellular fibrillar connective tissue. Incredulous reactions to such fresh-

looking biomaterial cited bacterial contamination, and in particular that mucilaginous 

bacterial biofilm was mimicking vertebrate tisses
31

. In response, the original team added 
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more colleagues who sequenced collagen protein from the T. rex (Museum of the Rockies 

specimen MOR 1125), found in the Cretaceous Hell Creek Formation of Montana
32

.  

 

Figure 1.2 | Fig. 1 from Schweitzer et al, Science, 2005.  

 

A more detailed follow-up study revealed additional tyrannosaurid biochemicals 

from the same sample. It included results from immunofluorescence. Schweitzer and 

colleagues imaged proteins specific to vertebrates, including PHEX and histone H4
30

. 

They also applied the same vertebrate-specific protein detection procedures to a 

Brachylophosaurus canadensis (hadrosaur) femur that was extracted using sterile 

handling techniques from the Cretaceous Judith River Formation. In collaboration with an 

unbiased, external laboratory to perform collagen sequencing, the report confirmed elastin 

and laminin bone proteins as well as collagen
33

. An additional publication on this 

specimen described phenomena characteristic of modern blood vessels, including 

translucence, pliability, and reaction to immunological staining for collagen and other 

epithelial proteins.
34
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Another study published remarkable low magnification micrographs of a large, soft 

and pliable brownish sheet of fibrillar tissue exposed in a Triceratops horridus (HTC 06) 

horn core from the Hell Creek Formation of Northern Montana
35

. The study authors noted 

that no known bacterial biofilm rebounds after stretching, refuting the biofilm hypothesis.  

They also used scanning electron microscopy (SEM) to image osteocytes with delicate 

canaliculi. In collaboration with the sample repository, a portion from HTC 06 was 

obtained for analyses detailed in this thesis. 

Polish researcher Roman Pawlicki’s scientific output detailing original dinosaur 

tissues spanned more than three decades, included exquisite electron micrographs of bone 

tissue from a Gobi Desert Tarbosaurus bataar in 1998
36

, and are ongoing
37

. The 1998 

report noted, “the descriptions presented confirm that the morphology of the vascular 

canals in dinosaur bones and the bones of modern reptiles is the same”
36

. This sample 

likely represents the same Tarbosaurus that Pawlicki et al imaged using electron 

microscopy in 1978
38

 and in a 1966 Nature issue that showed dinosaur collagen fibers
39

. 

His papers reveal osteocytes, collagen fibers, and unusually, a positive immunoassay for 

DNA in dinosaur osteocyte nuclei
40

.  

Electron microscopy was again used in 2008 to visualize exceptionally well-

preserved (naturally mummified) skin from a Chinese Psittacosaurus mongoliensis 

specimen. It compared dinosaur  to modern collagen fibre bundles
41

. The same 

researcher, South Africa’s Theagarten Lingham-Soliar, published images of original skin 

coloration in a separate Psittacosaurus, also from China. Original, unaltered pigments 

including carotenoids and melanins were described in the specimen
42

. Researchers 

working in southern China reported endogenous protein from a tiny, egg-encased, 

Jurassic embryonic sauropod Lufengosaurus femur
43

. The most likely source for the 

protein signature that they detected was bone collagen. 
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A more recent example comes from what 2017 news reports called the world’s best-

preserved dinosaur of its kind. Canadian miners encountered the armored nodosaur 

Borealopelta upside-down in shale sand. The fossil looks more like a carcass than a rock, 

preserves the outline of skin, and shows every spike and nodule of the animal’s dorsal 

surface. Spectroscopy and mass spectrometry revealed that in the skin were preserved 

original melanin pigments from which the animal’s coloration scheme was 

reconstructed
44

.  

More examples of apparently endogenous fossil bone proteins include non-collagen 

protein fragment sequences from an Iguanodon bone housed at the Natural History 

Museum of London
45

. Researchers described amino acids from a New Mexico 

Seismosaurus
46

 and even in fossil shells
47

. The now-dated 1980 book Biogeochemistry of 

Amino Acids noted, “work with dinosaur remains demonstrated that enough protein for 

analysis could often be recovered from bones and teeth as old as the Jurassic”
48

. The 

history of reported fossil proteins and protein constituents contrasts with the widespread 

concept that Mesozoic and earlier-deposited fossils all represent mineralised artifacts that 

contain no original biological material. In summary, many workers maintain extreme 

skepticism despite plenty of direct and indirect detection, using a dozen different 

techniques including mass spectrometry and various spectroscopic techniques used to 

verify proteinaceous or other biochemicals endogenous to Mesozoic strata. 

 

Original biochemistry from Paleozoic and older specimens 

Biochemicals original to Paleozoic fossils occur more rarely in the literature than 

Mesozoic and certainly than Cenozoic finds. Research into taphonomic modes that favour 

preservation of Paleozoic biota has not yet deduced adequate modes of preservation, 

leading to persistent controversy. An adequate taphonomy needs to explain pervasive 
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preservation by kerogenisation and carbonisation, among other modes, in Paleozoic 

fossils. 

In kerogenisation, which differs from carbonisation only in its lower degree of 

pyrolysis, heat alters mixed original organics into a blackish residue thought to be more 

resistant—perhaps like coal—to the ravages of time than the original organics from which 

they derived. Like coalification, kerogenisation drives off water and volatiles. Many 

studies of carbonisation in Burgess Shale-Type (BST) fossils have determined that 

mineralisation processes of one sort or another, often mediated by bacterial degradation 

soon after the typically soft-bodied Cambrian organisms died, played a large role in 

preservation. A relatively recent review of the 13 most prominent BST fossil sites 

concluded, “However, in the great majority of cases it is a carbonaceous film alone that 

defines the overall morphology of the fossils”
49

. The same authors reviewed occurrences 

of this “carbonaceous film” (un-mineralized remains) on most continents, a distribution 

that resembles fossils in general.  

Preservation modes like the BST also occur in more recent geologic settings, 

including the Cretaceous. Possibly subtle differences in sedimentation rates vary the time 

during which a carcass experiences sulphate-reduction microbial action that leads to 

pyritisation versus methanogenic microbes that lead to kerogenisation and the production 

of carbonaceous films
50

.  

Even without preservation schemes adequate to preserve original biomaterials in 

Paleozoic settings, a handful of cases appear in the literature. Their lower numbers in 

lower strata could result simply from workers not focused on original biochemicals in 

their specimens at hand.  

The periderm of some Ordovician graptolites exhibited collagen-like structures, 

imaged by wide-angle X-ray diffraction in 1972 by Towe and Urbanek
51

. Graptolites 
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occur in Paleozoic strata and some forms are extant. They are small, worm shaped marine 

creatures that secrete tube-shaped organic thecae, thought to be composed of collagen or 

chitin. Chitin is a biochemical found in squid beaks and pens, arthropod exoskeletons, and 

certain fungi, where it incorporates glass-like spicules into its support structure. The 

researchers found a few amino acids, but not the 4-hydroxyproline or 5-hydroxylysine 

characteristic of collagen. The Towe and Urbanek results were thus not definitive for 

original collagen, but were consistent with either collagenous or chitinous residues, and 

suggest that graptolite fossils, which occur worldwide, warrant further investigation. 

Much later, definitive analyses showed that Paleozoic scorpion and false scorpion fossils 

retained their original exoskeletons, including chitin and chitin-associated protein
52

.  

The prevailing paradigm for British Columbia’s Burgess Shale fossils holds that the 

flattened soft-bodied creatures consist merely of impressions, mineralised (for example 

pyritised) outlines of soft tissue, or kerogen. However, a German and Russian team used 

fluorescence microscopy, Fourier Transform Infrared (FTIR) microscopy, high-

performance capillary electrophoresis, high pressure liquid chromatography, and mass 

spectroscopy to recently identify intact chitin in the Burgess sponge, Vauxia gracilenta
53

.  

Equally surprising preservation was described in still-flexible, proteinaceous marine 

tube worm tubes. Extracted from Siberian drill core samples of Ediacaran strata, 

Moczydlowska described the worm casings as not mineralised, and original to the 

worms
54

. Comparison revealed direct correspondence with the chitin-structural protein 

composition of worm casings in extant siboglinid counterparts.  

Despite this extensive published literature, skepticism over original biochemical 

fossils persists. A 2017 report attempted to refute dinosaur-specific collagen sequences 

published in 2009 by showing a mismatch between expected and reported sequences, and 

by suggesting instrument contamination with modern sample
15

. However, it is difficult to 
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define an expected sequence when no living samples exist for comparison, and the 

instrument contamination scenario generates even more problems. It calls into question 

the protein sequencing methodology. Even if these collagen sequences from two fossils 

that also showed immunoreactivity to a handful of other proteins as well as whole tissue 

preservation were shown to be in error, then skeptics of original biochemistry in fossils 

would still need to refute dozens of biochemical detection reports throughout the 

scientific literature (see below). The development of new technologies or new and 

accessible applications of established techniques could help add more data from the fossil 

record in an effort to determine the accuracy and distribution of these discoveries. 

Increased detection efficiency could also enable future studies to test diagenetic 

hypotheses as proposed for various geologic, archaeologic, or geographic sites.  

 

Five trends in over 70 original biochemistry fossil reports 

Table 1.1 identifies the biochemical or other original organic component and, if 

available, the Genus name of the animal from which that component derived. The Table 

also notes geologic and geographic settings for each find. Following this, Figs 1.2-1.6 

summarise trends that 70 original biochemistry fossil publications reveal. Figs 1.3, 1.4 

and 1.6 are derived from Table 1.1. Five trends are identified by this compilation. They 

suggest target research questions that are then addressed in this thesis.  

 

Taxon and associated 

biochemical 

GSA
*
 System, 

Age 

Formation, 

Geography 

Year 

Published 

Dinosaur bone collagen & 

vessels  

Cretaceous, 

Campanian Gobi Desert, Mongolia 1966
39

 

Megalosaurus egg shell protein 

Jurassic, 

Bathonian 

Rognacian Fm., S. 

France 1968
55

 

Sauropod limb hydroxyproline 

Jurassic, 

Kimmeridgian Morrison Fm., CO 1968
56

 

Dinosaur proteins and 

polysaccharides 

Cretaceous, 

Maastrichtian ?? 1974
57
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Dinosaur gelatinised collagen Cretaceous Western US 1976
58

 

Mollusk shell glycoproteins Cretaceous  

Coon Creek Fm., 

Tennessee 1976
59

 

"Dinosaur bones" parallel 

collagen fibers 

Cretaceous, 

Campanian Mongolia 1985
60

 

Seven hadrosaurs' unfossilised 

bones 

Cretaceous, 

Campanian 

Upper Colville Grp., 

Alaska 1987
61

 

Tyrannosaurus tooth 

hydroxyproline 

Cretaceous, 

Campanian 

Judith River Fm., 

Alberta 1990
62

 

Diplodocus vertebra proteins Jurassic, Upper 

Morrison Fm., Brushy 

Basin member, NM 1991
46

 

Lambeosaurus osteocalcin 

Cretaceous, 

Campanian Alberta 1992
63

 

Various dinosaurs, organic 

material 

Cretaceous, 

various 

Judith River Fm., 

Alberta 1993
64

 

Hymenaia protera (extinct tree) 

chloroplast DNA Eocene, Upper 

La Toca mine, 

Hispaniola 1993
65

 

Amber insects unaltered amino 

acids  

Cretaceous, 

Barremian Dominican Amber 1994
66

 

Tarbosaurus osteocyte DNA 

Cretaceous, 

Campanian Gobi Desert, Mongolia 1995
40

 

Tyrannosaurus bone heme  

Cretaceous, 

Maastrichtian Hell Creek Fm., MT 1997
36

   

Tyrannosaurus DNA, amino 

acids 

Cretaceous, 

Maastrichtian Hell Creek Fm., MT 1997
67

 

Tarbosaurus blood vessels 

Cretaceous, 

Campanian Gobi Desert, Mongolia 1998
25

 

Shuvuuia feathers β-Keratin 

Cretaceous, 

Upper 

Ukhaa Tolgod, SW 

Mongolia 1999
68

 

Rahonavis (extinct bird) keratin   

Cretaceous, 

Maastrichtian Madagascar 1999
69

 

Scelidosaurus skin layers, cells, 

dermal scales 

Jurassic, 

Pleisenbachian? Lias Group, England 2000
70

 

Tyrannosaurus collagen SEM 

scans 

Cretaceous, 

Maastrichtian 

Lance Fm., Newcastle, 

WY 2001
71

 

Jeholopterus skin, fibers 

Cretaceous, 

Barremian 

Yixian Fm., 

Ningcheng, Mongoloa 2002
72

 

Iguanodon osteocalcin protein 

Cretaceous, 

Aptian UK 2003
45

 

Micrococcus (non-spore-

forming bacteria) alive in amber 

Cretaceous, 

Aptian 

Lebanese amber, Mt. 

Hermon, Israel 2004
73

 

Tyrannosaurus soft, flexible 

connective tissue 

Cretaceous, 

Maastrichtian Hell Creek Fm., MT  2005
29

 

Titanosaur egg ovalbumin 

Cretaceous, 

Upper 

Rio Colorado Fm., 

Bajo de la Carpa 

Member, Argentina 2005
74

 

Enantiornithine embryo collagen 

Cretaceous, 

Upper 

Rio Colorado Fm., 

Argentina 2005
75

 

Frog bone marrow 

Miocene, 

Tortonian 

Libros Basin infill, NE 

Spain 2006
76

 

Tyrannosaurus collagen 

Cretaceous, 

Maastrichtian Hell Creek Fm., MT 2007
77-79

 

Triceratops blood vessels Cretaceous, Hell Creek Fm., E. MT 2007
80
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Maastrichtian 

Feather melanocytes 

Cretaceous, 

Albian Crato Fm., Brazil 2008
81

 

Leaf fragments in mummified 

Brachylophosaurus gut 

Cretaceous, 

Campanian Judith River Fm., MT 2008
82

 

Psittacosaurus skin fibers 

Crecaceous, 

Barremian 

Jehol Biota, Yixian 

Fm., Liaoning 2008
41,83

 

Brachylophosaurus blood 

vessels, collagen sequence, 

elastin, laminin 

Cretaceous, 

Campanian Judith River Fm., MT 2009
33

 

Bird feather, purple pigment Eocene, Bartonian 

Germany, Messel 

shale 2009
84

 

Hadrosaur skin cell structures 

Cretaceous, 

Maastrichtian Hell Creek Fm., ND 2009
85

 

Salamander muscle, whole 

Miocene, 

Burdigalian 

Ribesalbes Lagerstätte, 

NE Spain 2009
86

 

Stegosaurus plate keratin Jurassic, Upper 

Howe Quarry, 

Morrison Fm., WY 2010
87

 

Sinosauropteryx melanosomes 

Cretaceous, 

Aptian Jehol Group, China 2010
88

 

Psittacosaurus skin scales and 

pigment 

Cretaceous, 

Aptian 

Jehol Biota, Yixian 

Fm., Liaoning 2010
42

 

Mammal hair in amber 

Cretaceous, 

Albian 

Archingeay-Les 

Nouillers, Charente-

Maritime, France 2010
89

 

Archaeopteryx original elements 

Jurassic, 

Tithonian Solnhofen, Bavaria 2010
90

 

Penguin melanosomes 

Eocene, 

Priabonian 

Yumaque Point, 

Paracas Reserve, Peru 2010
84

 

Mosasaur humerus Type I 

collagen 

Cretaceous, 

Maastrichtian Ciply Chalk, Belgium 2011
91

 

Scorpion chitin and chitin-

associated protein 

Pennsylvanian, 

Moscovian Cave fill, N. Illinois 2011
52

 

Eurypterid chitin and chitin-

associated protein Silurian, Upper 

Williamsville Fm., 

Ontario 2011
52

 

Pterodactylus actinofibrils Jurassic, Upper Solnhofen, Bavaria 2011
92

 

Lizard tail skin breakdown 

products Eocene, Bartonian 

Green River Fm., 

Wyoming 2011
24

 

Tyrannosaurus and Hadrosaur 

Type l collagen  

Cretaceous, 

Maastrichtian Hell Creek Fm., MT 2011
8
 

Cuttlefish ink sac 

Jurassic, 

Oxfordian 

Blue Lias Fm., Lyme 

Bay, England 2012
93

 

Turtle osteocytes 

Jurassic, 

Tithonian Mongolia 2012
94

 

Tyrannosaurus and 

Brachylophosaurus actin, 

tubulin, histone, PHEX, DNA 

Cretaceous, 

Maastrichtian; 

Campanian  

Hell Creek Fm.; Judith 

River Fm., MT 2013
30

 

Lufengosaurus embryo bone 

protein 

Jurassic, 

Sinemurian 

Upper Lufeng Fm., 

Yunnan 2013
43

 

Triceratops osteocytes; soft 

sheets of fibrillar bone 

Cretaceous, 

Maastrichtian Hell Creek Fm., MT 2013
35

 

Mosquito gut hemoglobin Eocene, Lutetian Kishenehn Fm., MT 2013
95

 

Crinoid original organics Mississippian, Edwardsville Fm., IN 2013
96
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Tournaisian 

Vauxia (sponge) chitin Cambrian, Age 3 

Burgess Shale, British 

Columbia 2013
53

 

Gastropod egg chitin 

Jurassic, 

Hettangian Skłoby Fm., Poland 2014
97

 

Sabellidites (tube worm) chitin, 

protein 

Proterozoic, 

Ediacaran 

Nekrasovo & Rovno 

Fm.'s, Russia 2014
54

 

Mosasaur melanin, 

melanosomes 

Cretaceous, 

Coniacian Boquillas Fm., TX 2014
98

 

Icthyosaur eumelanin in 

melanosomes 

Jurassic, 

Sinemurian 

Blue Lias Fm., Lyme 

Bay, England 2014
98

 

Brachylophosaurus blood 

vessels, collagen sequence 

Cretaceous, 

Campanian Judith River Fm., MT 2015
34

 

Dinosaur collagen and red blood 

cells 

Cretaceous, 

Campanian 

Dinosaur Park Fm., 

Alberta 2015
99

 

Dinosaur melanosomes and 

pigment 

Jurassic, 

Tithonian 

Tiaojishan Fm., 

Liaoning  2015
100

 

Rhamphyorhynchus orange claw 

material 

Jurassic, 

Tithonian Solnhofen, Bavaria 2015
101

 

Proteinaceous amide groups in 

chert 

Paleoproterozoic, 

Orosirian Gunflint Fm., Ontario 2016
102

 

Nothosaurus, Protanystropheus 

blood vessels, etc. 

Triassic, 

Olenekian 

Gogolin Fm., S. 

Poland 2016
37,103

 

Psittacosaurus keratin in skin  

Crecaceous, 

Barremian 

Jehol Biota, Yixian 

Fm., Liaoning 2016
104

 

Citipati (oviraptor) claw Beta-

keratin  

Cretaceous, 

Campanian 

Djadokhta Fm., 

Mongolia 2016
67

 

Dinosaur eggshell 

protoporphyrin, biliverdin 

Cretaceous, 

Maastrichtian 

Hougang, Tangbian, & 

Nanxiong Fm.'s, China 2017
105

 

Lufengosaurus adult rib collagen 

Jurassic, 

Sinemurian 

Upper Lufeng Fm., 

Yunnan 2017
106

 

Borealopelta (Nodosaur) 

melanin plus other biochemicals 

Cretaceous, 

Aptian 

Clearwater Fm., 

Alberta 2017
44

 

Mammalian erythrocytes in tick 

gut Upper Paleogene 

El Mamey Fm., 

Dominican Amber 2017
107

 

Brachylophosaurus collagen re-

confirmed 

Cretaceous, 

Campanian Judith River Fm., MT 2017
108

 

Messelirrisorid bird uropygial 

gland, yellow oil Cenozoic, Eocene 

Messel Shale, Hesse, 

Germany 2017
23

 

 

Table 1.1 | Publications of Original Biochemistry in Fossils. 77 publications which show the 

results of more than a dozen different techniques used to detect biochemical signatures, including 

some techniques used in this thesis. Reports that named “soft tissues” but specified 

mineralisation, and reports that did not address mineralisation versus original organics, were 

rejected. This list is not comprehensive, but is the most complete collection of its kind, to the best 

of the author’s knowledge. Cenozoic original biochemistry fossils are extremely under 

represented here (see Fig. 5 caption), since publications that dealt with the oldest, most difficult to 

explain, samples from Mesozoic, Paleozoic, and lower layers were instead targeted. * GSA = 

Geological Society of America. In publications that omitted the GSA Age, it was inferred by 

matching the published age date to the GSA Geologic Time Scale, version 4.0
109

. 
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The first trend from Table 1.1 is that taxa from which researchers extract original 

biochemistry vary widely. It seems that no particular taxon is exempt from having organic 

remnants preserved as fossils. The list includes biochemistry from plants, microbes, 

amber-encased insects, clay-encased arthropods, sandstone- and mudstone-embedded 

dinosaurs, shale-bound semiaquatic reptiles and birds, fully aquatic reptiles in limestone, 

and perhaps most surprisingly, seafloor worm and sponge tissues found below the 

Cambrian. The list includes representatives from the phyla Monera, Porifera, Annellida, 

Plantae, Arthropoda, Mollusca (classes Gastropoda and Cephalopoda), Echinodermata, 

and Vertebrata (classes Mammalia, Aves, Amphibia and Reptilia.) This trend suggests 

that original biochemistry from additional phyla and lower level taxa await discovery.  

Nor do those ancient animals’ environmental niches seem to play much of a role in 

selection of primary organics for fossil preservation. Fossil assemblages and adaptive 

features of fossil forms suggest their origins from benthic, neritic, lacustrine, tropical, 

swampland, and perhaps semiarid terrestrial habitats. Taxa representing terrestrial biomes 

such as arid desert, savanna, temperate forests, taiga and tundra are rare or absent among 

Paleozoic and Mesozoic fossil biochemicals. However, this is due to the swampy, marine, 

and lacustrine environments that Mesozoic strata captured in general, and not to any 

specific taphonomy or diagenesis that favored or disfavored biochemical preservation. 

Many more dry land-living taxa occur in Cenozoic than Mesozoic deposits worldwide. 

Also, no dry-land taxa—with or without biochemical preservation—occur in Paleozoic 

strata. If another table was constructed that included Cenozoic biochemistry, it would fill 

many pages, and undoubtedly reveal abundant and widespread biochemical preservation 

of upland-living taxa
23,58

. In short, fossilized creatures from land, sea, and sky retain 

original biochemical remnants. Creatures from swamp, sea and sky that happen to occur 
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in Mesozoic strata also retain original biochemistry according to an abundant, if not 

widely known, body of technical literature.  

A third trend that Table 1.1 reveals is that of an increased interest in, and 

investigation of, original biochemistry fossils in recent years. What accounts for the 

increase in published papers on this topic? A 2005 Science paper showed full-color, clear 

photographs of blood red tissue and still-red erythrocyte-like elements inside blood 

vessels extracted from the sectioned femur of “B rex” (MOR 1125), a T. rex named after 

discoverer and dig volunteer Bob Harmon 
29

. He located the fossil on a Montana hillside 

in the Hell Creek Formation. That paper, plus a series of three follow-up reports all 

published in one 2007 issue of Science
77-79

, invigorated fascination in those investigating 

dinosaur phylogenies as well as controversy in those familiar with the lability of 

biochemicals. Those papers appear to have sparked a string of similar research, as shown 

by the higher bars post-2005 in Fig.1.3, while simultaneously inciting vigorous demand 

for more definitive evidence
11

 and dismissiveness from other circles
110

. Thus, more 

  

 

Figure 1.3 | Original Biochemistry Fossil Publications by Year. The years 1970-1973 and 

1975-1984 are represented by ellipses in order to display the data legibly. This list is not perfectly 

comprehensive, but represents the literature accurately enough to reveal temporal trends. 

Investigators merely dabbled in fossil biochemistry from the 1960’s until 2004. Beginning with 

dinosaur whole tissue discoveries in 2005, and in conjunction with the arrival of new techniques 

(see text), research has surged.  
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researchers have of late risked or suffered ire from peers all while pioneering discoveries 

of primary proteins and other biochemistry such as lipids
23

, nucleic acids
30

, and biological 

pigments such as melanin
111

 and protoporphyrin
105

 in fossils.  

New techniques with the potential to nondestructively analyze labile organic fossil 

components have also come online of late. Workers have availed themselves of these 

techniques in order to gain unprecedented insights into fossil organics and what those 

data imply for physiology, diet, diagenesis, and other realms. These reports, including 

results presented in this thesis, aim to solve the mystery of the apparent longevity of labile 

organic structures, and to explore how far afield and how deeply buried those organics 

extend.  

So far, data Table 1.1 reveals three trends: 1. Biochemical persistence occurs in all 

taxa, 2. Biochemical persistence is independent of paleoenvironment, and 3. A recent 

increase in investigation and published work. A fourth trend shown in Fig. 1.4.reveals 

preliminary geographic distribution of original biochemistry in fossils worldwide. 

 
 

Figure 1.4 | Global Distribution of Original Biochemistry Fossils. Approximately seventy 

original biochemistry fossil locations show a non-random worldwide distribution. High 

concentrations likely reflect a combination of sample accessibility and general fossil distributions 

(see Fig. 1.5). 
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In Fig. 1.4, the bone proteins collagen and osteocalcin were marked separately from 

other biochemicals in fossils because this thesis focuses on bone fossils. The marked 

locations of original collagen versus other organics suggest future research into the extent 

of their overlap. Present data appear insufficient to answer this. Overlap does occur in the 

American West, the Gobi, and Northern Europe. However, a lack of overlap may simply 

mean researchers have not yet looked for, or do not have the tools to detect, collagen in 

locations such as China’s Jehol Biota and Southern Europe. For comparison, Fig. 1.5 

shows the distribution of fossils in general using the Paleobiology Database.  

 

Figure 1.5 | Global Distribution of 28,834 Mesozoic Reptilia. The Paleobiology Database at 

paleodb.org was accessed to generate a distribution map of general fossils to compare with the 

distribution of biochemistry fossils from Fig. 1.4. The data were downloaded on 25 February, 

2018, using the filters “Mesozoic” and “Reptilia.” Comparison reveals that original biochemical 

fossils tend to occur wherever fossils are generally found. The 28,834 individual plotted 

specimens represent, in order of descending abundance, ornithischians, testudines, saurischians, 

theropods, avetheropods (includes birds), and other reptiles.  
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The occurrence of original biochemical fossils on most continents suggests that more 

merely await discovery on remaining continents Australia, Antarctica, and mainland 

Africa. Regions with few biochemistry fossils, such as Amazonia, the Sahara and Congo, 

and the deserts of Western Australia, coincide with regions where few fossils occur in 

general. This suggests that original biochemistry fossil finds may continue to populate 

many more fossil sites. More data would help diagnose these suggestions.  

The fifth and final trend that emerges from Table 1.1 pertains to the distribution of 

original biochemistry fossils throughout the geologic column. The diagram shown in Fig. 

1.6, here taken from the GSA Geologic Time Scale v. 4.0109, shows (mostly sedimentary) 

rock layers not to be found in any single earth location, from many separate locations, 

here compiled graphically. All three Cenozoic rock Systems were reduced to a single bar 

at the top merely to show that it was not entirely forgotten in this present analysis. 

According to the above remarks, if the Cenozoic bar displayed a more accurate number of 

reports, its corresponding bar would stretch across many pages at the scale shown here. 

Therefore, Fig. 1.6 should only be taken to represent the current number of reports from 

strata deposited prior to the Cenozoic. Similarly, the entire Precambrian assemblage was 

reduced to the two Systems with reported original biochemistry.  

Ignoring the Cenozoic, the Cretaceous System has more than double the number of 

original biochemistry fossil reports than from all other geologic Systems combined. This 

could be partly due to the lack of heating that these rocks experienced since deposition. 

Higher temperatures and intense hydrothermal action can transform and redistribute 

ancient buried carcasses. The occasional biochemicals reported from pre-Cretaceous 

fossils suggest that these factors avoided certain pockets of earth’s crust over time. 
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Figure 1.6 | Geological Distribution of 

Reported Original Biochemistry in Fossils. 

This chart emphasizes Mesozoic and Paleozoic 

rock Systems, as it condenses the entire 

Cenozoic at the top, and the entire 

Precambrian at the bottom down to merely the 

Ediacaran and Orosirian Systems. The data 

reveal a predominance of biochemistry in 

Cretaceous System rocks, and a persistent 

trickle of biochemistry elsewhere. 
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This geologic distribution shows that original biochemistry fossils also occur in some 

of the oldest strata that contain any fossils. No reports have yet described them from 

Permian or Devonian Systems. However, Systems that do preserve original organics or at 

least decayed remnants of those organics, flank both.  These data suggest that original 

biochemical discoveries will, assuming adequate research focus and detection tools, begin 

to fill empty positions in the column diagram.  

The five trends gleaned from Table 1.1 show that original biochemistry is 

geologically extensive, geographically global, and taxonomically wide-ranging. The 

limits are not clear, if they are present at all. The questions arise as to which rock strata 

have more or less biochemicals and why? Which global locations have more or less 

biochemicals and why? Are there any taxa that have no biochemical representation in 

fossils, or should investigators expect to discover original biochemicals from any kind of 

creature, assuming taphonomy and diagenesis were favorable to preservation? Published 

results suggest two hypotheses. First, geographic and stratigraphic ranges for ancient 

collagen will continue to increase. Second, novel instrumentation and techniques will 

continue to confirm existing ancient proteins and help detect them in new places.  

 

Techniques used to verify biochemistry in fossils 

Table 1.2 notes many of the techniques used to detect original biochemistry in fossils 

as described in the literature listed in Table 1.1. Techniques in addition to those shown 

here, and especially techniques that directly and non-destructively target specific 

biochemicals, would help to either confirm or annul the hypothesis that published 

spectroscopic and spectrometric techniques have indeed detected original biochemistry in 

Mesozoic and lower strata. In addition, most of the techniques used so far involve costly 

instrumentation and/or time-intensive preparation as well as considerable expertise to  
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Technique Principle of operation Typical organic targets  

 

Collagen extraction Dissolution of biomineral, separation and 

purification for weight  

Collagen 

Liquid 

Chromatography 

Tandem Mass 

Spectrometry (LC-

MS/MS)  

Determination of protein masses by 

separation according to mass/charge ratio 

in the first MS; ions fragmented by 

collision in the second MS  

Any biomolecule with 

an analogue in database; 

Collagen common in 

protein sequencing 

Quantitative X-ray 

Fluorescence (XRF) 

Displacement of inner shell electrons by 

X-ray, and detection of resultant 

fluorescence energy differences  

Elemental analysis, 

Oxide compound 

detection 

Light microscopy  Magnification of intact tissue Whole, intact tissues  

Immunofluorescence Antibody-antigen localization in situ, 

visualized by fluorescent dye 

Any targeted proteins 

Scanning Electron 

Microscopy (SEM) 

Focused electron beam interacts with 

sample; backscattered electrons and 

characteristic X-rays detected 

Position and 

morphology of structure 

Synchrotron 

radiation Fourier 

transform infrared 

spectroscopy (SR-

FTIR) 

High brightness synchrotron light 

interacts with molecular structures at 

submicron resolution to form images by 

tomography 

Quantity, composition, 

and distribution of 

proteins; lipid functional 

groups 

X-ray absorption near 

edge structure 

(XANES) 

Similar to SR-FTIR, but X rays target 

coordination structures  

Elemental mapping of 

chelating metals 

Fourier Transform 

InfraRed (FTIR) 

spectroscopy  

IR light absorption by certain molecular 

arrangements generates characteristic 

spectra 

Vibrational modes of 

specific bonds 

Raman spectroscopy Similar to FTIR but detects Stokes 

scattered light instead of Raleigh scatter  

Vibrational modes of 

specific bonds 

Time-of-Flight 

Secondary Ion Mass 

Spectrometry (ToF-

SIMS) 

Ion beam ionizes molecules from sample 

surface; mass of ions determined by 

retention time in detector 

Organic molecules, e.g., 

amino acids 

X-ray photoelectron 

spectroscopy (XPS) 

X-ray excites atoms to emit electrons 

from characteristic shells; detects binding 

energy of electrons 

Elemental composition 

of surface chemistry 

Energy dispersive X-

ray spectroscopy 

(EDS) 

High energy beam induces sample surface 

to emit X-rays; electron voltage spectrum 

produced  

Elemental composition 

of surface chemistry 

Matrix-assisted laser 

desorption ionization 

(MALDI) mass 

spectrometry 

Laser impinges on sample surface at an 

angle, ionizes particles; ions enter mass 

spectrometer 

Total surface ions of 

sample, including 

collagen fragments 
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Table 1.2 |  Overview of Biochemical Detection Techniques from Table 1.1 Reports. 

Techniques in italics represent more direct biochemical detection methods, and those not in italics 

represent less direct detection methods. 

 

operate and interpret. Therefore more user-friendly, inexpensive, and rapid techniques 

would facilitate widespread increase in fossil biochemical analysis. 

Novel applications of established techniques and innovations toward new 

technologies are explored in this thesis. Before this discussion, however, the processes 

used to catalogue specimens and general descriptions of the specimens studied in this 

thesis, plus some of the partnerships with bone repositories, are described in chapter two. 

Chapter three then focuses on the novel application of second-harmonic generation 

(SHG) imaging using scanning confocal laser microscopy to fossils. The technique is well 

established as a valuable tool for biomedical research, but not for fossil analysis. 

Therefore considerable effort and further collaboration were required to establish the 

validity and applicability of SHG for fossil analyses. Chapter four describes FTIR and 

Raman spectroscopy. It combines resulting spectra taken from the archaeological and 

paleontological bone samples under investigation. Chapter five establishes FTIR as a 

novel and precise tool to assess collagen decay. In it, FTIR and SHG results from 

artificially decayed bone provide standards to help interpret results from actually decayed 

bone. Two chapters on carbon isotopes then follow. Stable carbon isotope analyses of 

ancient bone have some potential to inform questions about original proteins. Progress 

toward a field-deployable, inexpensive, and user-friendly quadrupole mass spectrometer 

with carbon isotope detection capability is described. Chapter six uses isotope analysis as 

an indirect means to investigate bone collagen by assessing the general degree of 

permineralisation versus preservation. Chapter seven shows how radiocarbon results 

inform biochemistry fossil questions and includes results that may be as challenging to 

interpret as original organics in fossils. The thesis concludes with some suggested means 
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of acquiring additional data that would help future research address questions of 

anomalous radiocarbon, collagen, and other biochemical fossil discoveries.  
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Curating a Collection 

Prior to conducting analyses on any sizeable collection, a cataloguing system is 

useful to help organize, retrieve, and transfer basic collection data for each specimen. 

When this research project began, so few specimens were in hand that at first no local 

records were required. One could simply keep in mind the identity and origin of each 

bone. However, as the collection grew over the years, unlabeled, poorly labeled, and 

poorly catalogued specimens became a source of confusion that required remedy.  

In addition, some journals require that all fossil or archaeological specimens 

described in a manuscript submitted for publication must have an accession number that 

ties to a permanent collection. To address these issues, three bone sample acquisition 

efforts arose: 1. Collaborations were developed with permanent repositories that house 

ancient bone collections, 2. Basic collection data was requested from each repository 

which were compiled for each bone (or other) sample, 3. Adequate collection data were 

recorded for all material from the field, and when acquiring a fossil from the open market, 

including any process that transferred ownership of the acquisition to a permanent 

repository for proper cataloguing and storage. In this way, other researchers would be 

able to replicate any analytical procedures—subject to the authority of the repository—

performed on the same specimen.  

The Society of Vertebrate Paleontology (SVP) posts a Best Practice fact sheet that 

outlines appropriate accessioning principles
1
. Similar ideologies should apply to 

archaeological as well as paleontological collections. As an example, Best Practice states 

that an acceptable repository should have as its aim the storage and accessibility of each 

fossil’s contextual data for researchers to access. Without this option, the core scientific 

principle of falsifiability would be hindered. The SVP “strives to promote reproducibility 

of research results by ensuring that scientifically important vertebrate fossils and their 
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contextual data are placed permanently in public-trust repositories to make them always 

accessible for researchers seeking to verify past results and to conduct new studies
1
.”  

“Contextual data” include: geographic location of the find (down to Global 

Positioning System (GPS) coordinates if possible), stratigraphy including precise depth 

below ground surface (or above sea level if possible), photographs that show scale, taken 

while the specimen was in situ and after excavation where appropriate, plus any field 

identifications and field numbers. In principle, any researcher should be able to track 

down the specimen using the name of the repository and the accession number of the 

specimen noted in research publications that describe that specimen. Another important 

service of the museums and universities that typically comprise repositories is that of 

ownership. Legal rights to conduct research are required to access and study the 

specimens within its care.  

 

Norton Priory, UK 

Using the SVP’s philosophy of practice, collaborations with various repositories 

were forged. One of the first and possibly most important (for reasons that will become 

plain in the next chapter, which describes the use of Second Harmonic Generation 

Imaging of ancient bone) collection made available for this thesis project is Norton 

Priory. Located near the town of Runcorn in Cheshire, England, the collection is housed 

on the site of a medieval abbey. The abbey complex originated in the 12
th

 century, was 

active for 900 years, and “is the most excavated monastic site in Europe
2
.” It was 

discontinued in 1536 by the dissolution of the monasteries under King Henry VIII.
1
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Figure 2.1 | Aerial View of Norton Priory. NP bones were excavated from approximately 

53º20’32” N, 2º40’44”W.  

 

Norton Priory houses and catalogs 70,000 medieval bones and other artifacts, with 

seasonal excavations ongoing. Bovine and human bone samples from Norton were 

generously supplied to the University of Liverpool (UoL) for this thesis research. Table 3 

summarizes some relevant contextual data for the specimens loaned to the UoL from 

Norton Priory for this research project. Additional catalogue data that includes all bone 

samples used in this project are recorded in a Google document viewable via the world 

wide web
3
.  

These Norton Priory bones proved strategically important to this research. In 

establishing the applicability and importance of techniques that explore the primary origin 

of protein and isotopic remnants in ancient bone, medieval samples serve to bridge a 

critical time gap between modern and very ancient samples. For example, Chapter 3 will 

describe how four separate techniques reliably detect collagen in medieval human 
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Specimen number Taxon/Description Stratigraphy Excav. 

Year 

Excavator 

NP71_12_9 (field#) 

(Acces. #: 2005.1/5/34)  

H. sapiens ulna Skeleton 35, Grave 34, 

Trench 12, context 9 

1971 Greene, P. 

NP71_13_9 (field #) 

(Acces. #: 2005.1/5/29)  

H. sapiens fibula Skeleton 29, Grave 28, 

Trench 13, context 9 

1971 Greene, P. 

NP73_34_81 (sk101) H. sapiens rib Trench 34, context 81 1973 Greene, P. 

NP77_109_34 (field #) Bovine radius Trench 109, context 34 1977 Greene, P. 

NP77_109_32 (field #) ? Trench 109, context 32 1977 Greene, P. 

NP77_109_5_1 (field #) 

(Acces. #: 2005/1/71)  

Bovine radius Trench 109, Context 5 1977 Greene, P. 

NP77_109_5_2 (field #) 

(Acces. #: 2005/1/71)  

Bovine tibia Trench 109, Context 5 1977 Greene, P. 

NP77_109_5_3 (field #) 

(Acces. #: 2005/1/71)  

Bovine femur Trench 109, Context 5 1977 Greene, P. 

NP77_109_52 (field #) Bovine humerus Trench 109, context 52 1977 Greene, P. 

NP14-4-402 Pagets 

(field#) 

H. sapiens right 

femur, proximal shaft 

medieval; no 

stratigraphy 

2014 Greene, P. 

NP14-4-402 Non-pagets 

(field #) 

H. sapiens right 

femur, central shaft 

medieval; no 

stratigraphy 

2014 Greene, P. 

 

Table 2.1 | Eleven bone specimens from the Norton Priory Collection. Column one identifies 

each specimen with its field and accession number, where assigned. NP means “Norton Priory”. 

Pagets refers to a collagen-related bone disease (see text). “Sk” means “skeleton,” and refers to 

one of the articulated skeletons. During excavation, a single field number can identify a bagged 

assortment of bones found in a single context. Thus, NP14-4-402 is assigned to two different 

human femora, one affected by an ancient form of Paget’s disease and the other non-affected, or 

normal. Additional collection data were recorded on a larger, digitally maintained spreadsheet.  

 

and bovine bones from Norton Priory. This step establishes for the first time the use of 

Second-Harmonic Generation (SHG) as a tool to investigate ancient collagen remnants in 

even older bone samples.  

Figure 2.2 shows two disarticulated human femur bone fragments, both designated 

with the field number NP14_4_402 because they were excavated near to one another. 

These two bones were selected from re-buried remains cast off from a 1970’s excavation 

at Norton. Archaeologist Carla Burrell of Liverpool John Moore’s University selected the 

bones during the 2015 summer dig season as part of a research collaboration investigating 

Paget’s disease in ancient bones. For some reason skeletons found in Norton Priory show 

high percentage of affected individuals over many years. In modern cases, the disease 
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seems to have genetic and environmental causative factors. Symptoms include bowed leg 

bones (femur, tibia, fibula) from weakened bone structure caused by irregular collagen 

fibre construction within bone tissue. One of the NP14_4_402 femurs was not affected, 

and the other was affected. Because of their reburial, their original contextual stratum 

could not be determined, and thus firm dates could not be established for these. However, 

they hold value even without age assignments, for example as subjects to test methods 

that explore ancient Paget’s disease in bone. Each bone was sectioned (described below) 

for microscopy to ascertain if the ability of SHG to image collagen fibre structure in 

modern bone would reveal collagen irregularities in ancient affected versus ancient non-

affected bone. Those resulting SHG images are presented in Chapter 3, while Figure 2.2 

here illustrates some of the Norton Priory human samples. 

  
 

Figure 2.2 | Sample of Norton Priory bones:  two femurs with field number NP14_4_402. a, 

Femur head and partial shaft from a non-affected (i.e., non-Pagets disease) Medieval human. b, 

Partial femur shaft of a Pagets-like disease affected human, showing characteristic bowing or 

curvature. Both bones were supplied to the UoL for SHG imaging. Photo Credit: Dr Carla Burrell, 

Liverpool John Moore’s University. 

 

A rib fragment from skeleton 101, field number NP73_34_81, was particularly 

important in establishing SHG as a relevant and useful tool for ancient bone collagen 
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visualisation. Collaborators at the University of Nottingham processed the rib for protein 

sequencing. It belongs to one of the 130 or so articulated skeletons excavated from 

Norton Priory.
4
  Protein sequencing is regarded as the best method and ‘gold standard’ for 

collagen-specific detection in ancient bone. Thus, Chapter 3 will show that the SHG 

detection of collagen from this NP73 rib fragment combined with collagen sequencing 

from the same rib demonstrate that SHG supplies novel information about ancient bone 

collagen.  

Radiocarbon dates for five NP bone samples (NP77_109_34, NP77_109_32, 

NP77_109_5_1, NP77_109_5_2, NP77_109_5_3) were originally obtained by NP or 

other research entities that partnered with NP. The radiocarbon age date for one of them 

(NP77_109_32) is confirmed herein, using a different laboratory than the original 

analysis. The advantage of importing already established radiocarbon ages into this 

project, and confirming those analyses with new ones, is that it permits a comparative 

benchmark for new techniques, results, and analyses. Samples with established ages have 

the potential to reveal age-related isotopic differences and even to contribute results 

toward resolution of the ancient bone collagen debate described in Chapter 1.  

 

University of Leicester, UK 

The earliest artifacts from Norton Priory graves or middens span as far back as about 

AD650. Bone samples under the care of the University of Leicester are even older. The 

University of Leicester houses artifacts recently excavated from a Hallaton shrine.
5
 The 

shrine consists of ritualistic burial pits just outside the village of Hallaton and just outside 

Castle Hill Camp
6
, Leicestershire, UK, approximately 22km SE of Leicester. Castle Hill 

is the remains of a classic mott and bailey hill fort of post-Norman Conquest (i.e. post-

AD1066) construction, but the Hallaton shrine hails from the Roman Conquest of AD43. 
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Figure 2.3 shows a Google maps image of the general location for the Hallaton shrine, 

located along the side of a low hill.  British and a few Roman silver coins, a bowl, helmet, 

Canus sp carcasses and many Sus scrofa (wild boar) bones were buried by indigenous 

Celts as part of religious votive and feasting activities possibly related to the Roman 

invasion itself
7
.  

 

Figure 2.3 | Aerial View of Hallaton. Hallaton village is seen top right, the Norman 

conquest Castle Hill fort at top left, and the Roman Era votive site between and south of 

these. Sus scrofa bones were excavated from the votive site at approximately 52º33;20 N, 

0º50’30” W, as estimated from Score (2012)
7
.  

 

Wild boar bone remnants from this votive site were made available to the UoL for 

this research. Archaeological investigations conducted by the nearby University of 

Leicester combined samples of a porcine metatarsal and rib, both sharing the field number 

XA102_2001_ 307_91_3, for carbon dating. A jaw and ischium from the same 

archaeological context, sharing the field number XA102_2001_98, were also carbon 

dated together. Both carbon ages matched and also confirm the age of the deposit based 

on chronological data printed on the coins associated with the burial. The analysis of 

collagen in NP and Hallaton bones—separated by about a millennium, firmly dated 
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archaeologically, and found in broadly similar burial contexts—provides relevant material 

to test the applicability of new techniques to investigate research questions like bone 

diagenesis or collagen decay in ancient bone.   

 

Earth History Research Center, USA 

The Earth History Research Centre operates under the authority of the Southwestern 

Adventist University system in the United States. In addition to funding and publishing 

research in historical biology and in paleontology and geology, the Centre curates various 

artifacts, mostly of paleontological interest. The centre maintains a collection of bones 

excavated during the 1993-1994 Pacific Gas Transmission/Pacific Gas and Electric 

Pipeline Expansion Project that installed a gas pipeline that spans from the US border 

with Canada to southern California. The locations and identities of all the fossils from this  

Figure 2.4 | Aerial View of site of the Megatherium excavation, Northern California. EHRC 

90002 was found in Colusa County at approximately 39°19’11” N, 122°15’45’ W in the 

Pleistocene Red Bluff pediment
8
 under the direction of Lee Spencer in 1994. 
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excavation were described in an official document prepared by California-based Paleo 

Environmental, Inc., under the employ of Bechtel Corporation.
9
 Two fossils retained from 

this project reached back further into the past to provide Ice Age samples for various 

analyses.  

A fossil Megatherium americanum (giant ground sloth) was the most impressive 

fossil preserved from the whole pipeline project. Its disarticulated skeletal remnants 

include portions of ribs, limb bones, some vertebrae, the mandible, and most notably the 

entire hip girdle. Figure 2.4 Shows some of the Megatherium bones, designated EHRC 

90002 (Earth History Research Center), and Figure 2.5 shows the hip girdle and some 

associated bones in storage on the campus of Southwestern Adventist University in 

Keane, TX. Some of the smaller, less significant bone fragments were supplied for this 

thesis research. 

 

Figure 2.5 | Megatherium americanum EHRC 90002. a, Hip girdle. b, Storage drawer housing 

assorted sloth bones including mandible. c, Proximal rib breakage exposes trabecular bone, 

showing no sedimentary infill, and recently broken white cortical bone, showing no 

mineralisation. d, Author holds same rib as in c. 
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Figure 2.6 | Aerial View of site of camelid EHRC90001, Northern Oregon. EHRC 90001 was 

found in Morrow County, Oregon at approximately 45°39' 37" N, 116°31' 7.45" W in the 

Pleistocene Palouse Formation. 

 

The accession number EHRC90001 designates few and relatively fragile remains of a 

camelid excavated during the PGT PG&E pipeline project. It came from the Pleistocene 

Palouse Formation
10

, essentially a massive windblown silt deposit, in Morrow County, 

Oregon. The bone fragments retain grey silt matrix that loosely adhered to their exteriors 

and partly penetrated exposed and porous spaces within the camelid bones. Some silt was 

scraped off some of the bones using a clean analytical spatula and spectroscopically 

examined for use as an experimental control.  

 

In addition to these two Pleistocene bone samples, two older samples of interest were 

acquired during the course of this research. Each sample was donated to and catalogued 

by the EHRC. These include a portion of a Triceratops prorsus brow horn, accessioned as 
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EHRC90003. It was excavated by John Parsons in August 2009 from the Cretaceous 

Lance Formation outcropping 15mi. N of Lance Creek, Wyoming, USA.  

The fourth set of fossils is the only non-bone set analysed in this project. Upon the 

discovery that extant brachiopods use a version of collagen as their proteinaceous binding 

agent for the biomineralisation of shell, exposures of well-preserved fossil brachiopods 

were sought with the intent to acquire brachs, test the sensitivity of collagen detection  

 

Figure 2.7 | Bones and shells curated by the Earth History Research Center (EHRC). a, 

Pleistocene camelid EHRC90001 shows gray coloured silt adhered to most of the unknown limb 

bone fragments. b, Pleistocene Megatherium EHRC90002 broken rib fragments expose what 

looks like still-red dried blood remnants. c, Devonian brachiopod Mucrospirifer sp. shells 

EHRC90004. d, Cretaceous Triceratops horn core EHRC90003 shows reddish remnants of matrix 

on exterior, and darkened but still porous trabecular bone. 
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techniques, explore their carbon isotopes, and compare any detectable with vertebrate 

collagen from various contexts. Six samples of extinct brachiopod Mucruspirifer 

thedfordensis were collected in 2011 from Devonian Hamilton Group exposures on the 

bank of the Ausable River in Ontario, Canada. They were donated to this research by  

excavator Martin Legaamate, and three were curated as EHRC90004. Figure 2.7 shows 

the four EHRC samples used during this thesis research.  

 

 

Glendive Dinosaur and Fossil Museum, USA 

Glendive Dinosaur and Fossil Museum (GDFM) is a privately owned museum in the 

city of Glendive, Montana. It conducts summertime paleontological digs in fossil-rich  

 

Figure 2.8 | Aerial view of a private ranch property GDFM fossil excavation site near 

Glendive, Dawson County, MT.  

surrounding countryside, with its outcrops of the Hell Creek Formation, famous for 

vertebrate fossils of exceptional preservation. Figure 2.7 encompasses private ranch land 

in Dawson County, MT from which all specimens shown in Table 4 below except 

GDFM18.001 and GDFM12.004 were collected. GDFM18.001 is described below, and 
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GDFM12.004 was collected from museum-owned property adjacent to the city of 

Glendive, from which the Museum conducts its summer digs.  

The Museum preserves and curates fossils mostly from its own collection efforts, and 

makes appropriate specimens available for research and displays. Table 4 summarizes six 

different dinosaur fossil fragments that the GDFM generously supplied to this research 

project.  

Specimen number Taxon/Description Stratigraphy Excav. 

Year 

Excavator 

HCTH06 (GDFM12.001) Triceratops sp./Horn 

core 

Maastrichtian, Hell 

Creek 

2012 Anderson, 

K. 

GDFM03.001  Triceratops/Femur Maastrichtian, Hell 

Creek 

2003 Kline, O. 

GDFM08.011 Triceratops/Femur Maastrichtian, Hell 

Creek 

2008 Kline, O. 

GDFM04.001 Hadrosaurid/Femur Maastrichtian, Hell 

Creek 

2004 Kline, O. 

GDFM18.001 Edmontosaurus 

annectens/Femur 

Maastrichtian, Lance  2017 Stout, A. 

GDFM12.004 Unknown/Limb 

fragment 

Maastrichtian, Hell 

Creek 

2012 Kline, O.  

 

Table 2.2 | Six bone fossil specimens from the Glendive Dinosaur and Fossil Museum 

(GDFM) Collection. Column one identifies each specimen with its field and accession number, 

where assigned. HCTH06 refers to a fragment of the GDFM12.001 Triceratops horn core  

 

The first and fifth entries from Table 4 represent unique situations. First, the 

originally intact Triceratops horridus brow horn core GDFM12.001 was sectioned and 

submitted to various entities for different analyses. HCTH06 designates a fist-sized 

portion of GDFM12.001 that engendered interest for bone collagen remnant exploration 

when a pliable sheet of apparent connective tissue plus osteocyte remnants were extracted 

from it and described by Armitage and Anderson (2013)
11

. A separate fragment of 

GDFM12.001 was donated to UoL. Some of this was sacrificed for carbon isotope 
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analysis, the results of which are described in chapter 6. Other portions were prepared as 

described below for microscopic and spectroscopic analyses.  

The fifth entry in Table 4 notes GDFM18.001, which was acquired through 

commercial vendor and discoverer Alan Stout. He excavated the femur and supplied the 

GDFM with sufficient collection data to authenticate and curate the find. This 

Edmontosaurus femur was selected on the basis of two characteristics. Its white color 

from apparently original (not mineralized) bone material, and its porous (not infilled with 

sediment or mineral deposits) trabecular spaces show high quality preservation. Also, its 

large size increases the chances of discovering original biochemistry, and matches the 

large sizes of other spectacular finds already published
11-14

.  

Figure 2.9 | Dinosaur bones curated by the Glendive Dinosaur and Fossil Museum (GDFM). 

a, GDFM 12.004. b, GDFM 18.001. c, GDFM 03.001. d, GDFM 08.001. e, GDFM 04.001. 

Arrow points to the hole from which a core was extracted for carbon isotope analysis. a and b 

photographed and stored by the author on behalf of the University of Liverpool. c-e photographed 

by GDFM. d and e include a black 6in (15.24cm) ruler for scale.  

 



53 
 

Hansen Research Station, USA 

Chapter 6 describes the geology of the Lance Formation as an equivalent of the Hell 

Creek Formation (HCF). Two reasons to consider them equivalent include the fact that 

they show very similar lithologies and very similar dinosaur and other fossil species. The 

main practical difference between the two is geographical. Given the fact that some of the 

most notable fossils to preserve original biochemistry were excavated from the HCF, 

opportunities to access both HCF through collaboration with GDFM as described above, 

and Lance Formation fossils were pursued. 

Hansen Ranch, owned by the Hansen family and located in far East Wyoming in the 

Powder River Basin, includes a large segment dedicated to the Hansen Research Station 

(HRS). At least 50,000km
2
 of bone beds contain over 16,000 catalogued and mostly 

disarticulated bones, teeth, and bone fragments within the HRS Cretaceous badlands 

deposits
15

.  

For almost two decades Hansen Ranch has directed an arrangement whereby fossils 

excavated from HRS during summer dig sessions are catalogued and stored during the 

remaining months of the year at facilities on the campus of Southwestern Adventist 

University (SWAU) in Keane, Texas. Since then, SWAU has pioneered technologies in 

fossil record-keeping, including the use of real-time kinematic (RTK) GPS to pinpoint the 

endpoints, outline, and axis of each bone  to centimeter-scale precision
16

. Photographs are 

then mapped to a digital render of the position of each fossil in situ. Figure 2.9a and b 

show 2-D renders of the 3-D visual file. These data are used to curate three dimensional 

digital models called Virtual Bone Beds. They show the emplacement of each of 

thousands of bones thus far excavated from the dinosaur graveyards.  

Table 5 shows the three HRS bone samples used in this research. In general 

appearance, some of the HRS dinosaur bone samples from the Lance formation are 
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heavier and darker than the GDFM dinosaur bone samples from the Hell Creek 

Formation, indicating more extensive mineralisation. 

 

Specimen 
number 

Taxon/Description Stratigraphy Excav. 
Year 

Excavator 

HRS08267 Edmontosaurus 
annectens/Unknown frag 

Maastrichtian, Lance 2007 Schwartzer, 
L.A. 

HRS26095 Edmontosaurus 
annectens/Caudal 
vertebrae 

Maastrichtian, Lance 2017 Gray, S. 

HRS19114 Unknown/limb fragment Maastrichtian, Lance 2012 Nelson, D. 

 

Table 2.3 | Three bone fossil specimens from the Hansen Research Station (HRS) Collection.  

 

 

Figure 2.10 | Dinosaur bones curated by Hansen Research Station (HRS). a, HRS08267 

exterior view. Shiny surface indicates cyanoacrylate residue. b, HRS08267 obverse, showing 

white PaleoPutty. Hole indicates an extraction site to access interior bone, thus avoiding 

treatments.  c, HRS19114. d, HRS26095, also shown in Figure 2.11. 

 

Figure 2.9 includes images captured using the photography procedures described 

below of the three HRS bone samples listed in Table 5. The bones were initially selected 
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for isotope analysis on the on the basis of their unsuitability for mounting and display. 

HRS houses type specimens, including a rare Nanotyrannus. HRS and SWAU comply 

fully with the International Commission on Zoological Nomenclature (ICZN) 

Recommendation 72, which provides guidelines for accessibility for these particularly 

significant fossils. For example, Recommendation 72F.3 states that “Every institution in 

which name-bearing types are deposited should…make them accessible for study
17

.”  

HRS makes their collections accessible both digitally, via www.fossil.swau.edu, and 

physically. Figure 2.11 shows an example of some of the state-of-the-art digital 

representations, using HRS26095 as seen in Table 5.  

 

Carnegie Museum, USA 

Chain of custody for three tiny dinosaur bone fragments, apparent remnants of a prior 

project, was traced back to Carnegie Museum (CM), Pittsburgh, Pennsylvania.  

This is the fourth largest fossil collection in North America, with over 100,000 

specimens
18

. The bones on loan were excavated among some of the first dinosaur finds in 

the USA, from Upper Jurassic deposits. Back then, during the famous ‘Bone Wars’ of the 

Western USA, very few records were kept as workers strove to make the next big find. As 

a result, catalogue data for these fossils are scarce. The online database for all CM 

collections recently migrated to www.idigbio.org/portal/search.  
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Figure 2.11 | Hansen Research Station HRS26095 visual record. a, Aerial view of excavated 

bones in “Triceratops 2 Quarry”. Each bone and tooth’s position in situ is digitally recorded with 

multiple RTK GPS measurements, shown as green circles for HRS26095. The quarry was named 

after the Triceratops skull visible near the bottom. b, HRS26095 Edmontosaurus annectens tail 

vertebra in burial context alongside other tail vertebrae. Scale bar is 1m. c, On-site photograph 

with basic field data, freely accessible online for all of over 16,000 fossils thus far excavated at 

HRS. Image credit: www.fossil.swau.edu. d, HRS26095 fragments on loan to UoL, photographed 

as per below, and selected for study because the peculiarly dark interior trabecular bone. 
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Specimen 

number 

Taxon Stratigraphy/Formation Excav. Year Excavator 

CM000088 Stegosaurus sp. Tithonian, Morrison 1899 Wortman, J.L. 

CM021728 Diplodocus longus Tithonian, Morrison ~1901-1906 Douglass, E. 

CM000094 Diplodocus 

carnegii 

Tithonian, Morrison 1900 Peterson, 

O.A./Gilmore, 

C.W. 

 

Table 2.4 | Three bone fossil specimens from the Carnegie Museum (CM) Collection. 

 

Table 6 summarizes basic data, checked against the database, for the three CM fossils 

on loan to UoL for this project. Diplodocus CM021728 came from Dinosaur National 

Monument, Utah. Diplodocus CM000094 (CM 94) and Stegosaurus CM 88 came from 

Sheep Creek site, Quarry D, in Wyoming. The online Specimen Record for the sauropod  

 

Figure 2.12 | Iconic Diplodocus mount at Carnegie Museum includes portions of CM000094. 

Diplodocus carnegii CM000094 lists many bones under this single number. The practice 

of assigning a separate number to each individual bone, as has been employed by HRS 
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and other modern repositories, was not yet developed when these finds were catalogued 

before 1906. CM000094 include the entire recovered carcass, including nine cervical 

vertebrae, nine dorsal vertebrae, sacrum, 39 caudal vertebrae, ribs, five chevrons, 

scapulae-coracoids, sternal plates, ilia, pubes, ischia, left Femur, right tibia, right fibula, 

right astralagus (talus), and a complete right pes, or foot. Portions of CM 94 (D. longus) 

were incorporated into the iconic exhibit mount of Diplodocus carnegii on display for 

over a century, as shown in Figure 2.12. The majority of the mount is CM 84, discovered 

in the same location and quarry as CM 94.  

 

Figure 2.13 | Dinosaur bones curated by Carnegie Museum. a, CM000094 prior to sacrificing 

a portion for isotope analysis. b, CM000094 remaining after portion sacrificed for isotope 

analysis, and after proper photography procedures were incorporated. c, CM21728 prior to 

sacrificing a portion for isotope analysis. d, CM21728 remaining after portion sacrificed for 

isotope analysis, and after proper photography procedures were incorporated. 
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Figure 2.13 shows the tiny fractions that remain after destructive analyses reported herein. 

No part of CM 88 remains, as unfortunately what little was originally available was 

sacrificed for isotope analysis. 

 

Photography 

The most thorough documentation procedures for cataloguing include photographs of 

each item both in situ and, after cleaning, show metric scale. Therefore when the numbers 

of various bones on loan to the University of Liverpool for this project grew, it became 

apparent that local photography was required to properly identify collection samples. A 

light box of approximately 3m
3
 was constructed using reinforced cardboard repurposed 

from crating material. The interior was spray painted white. One large opening in the 

front permits the camera access to the artifacts placed inside. Each of two large windows 

on opposite sides was covered with a sheet of white banner paper to diffuse light, thereby 

reducing shadow. A hinged, paper-covered frame was affixed over the top of the light box 

to give the option of using unshaded or shaded light from the top. 

 

Figure 2.14 | Light box. Construction of a light box was essential to achieve optimum lighting for sample 

photography of each suitable fossil fragment on loan. 
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A large sheet of banner paper was suspended across the back and bottom surfaces to 

remove corner shadows. Three OttLight (Tampa, FL) Natural Daylight LED Flex Desk 

Lamps, each of which emits full spectrum white light with a colour temperature of 6500K 

and a colour rendering index (CRI) of 96%, were positioned on the sides and top of the 

light box during photography. A Canon EOS 5D Mark III Digital SLR Camera equipped 

with a Canon EF 50mm f/1.8 STM lens was used. F-stops and ISO speeds were adjusted 

differently during various photo sessions. Each photograph has an accompanying file that 

lists these and other data. Scale bars of 10cm were printed and laminated to include 

beside each photographed sample. The physical scale bar, often seen out of the focal 

plane of the sample, was replaced with a digital scale bar using Photoshop. Photoshop 

was also used to white-balance each background. Ideally, each sample has its accession 

number painted directly onto the bone fragment’s outer surface. Some partnering 

repositories did this with samples of sufficient size, but for samples too small to 

accommodate such markings, a fossil I.D. card was created and photographed alongside 

each sample fragment. The cards were digitally removed from each photograph prior to 

publication. Figure 2.15 illustrates the photography process with example photographs of 

a dinosaur bone and its locally-held fragment, accompanied by its I.D. card.  

 

Bone Preparations 

First, bone samples were prepared for minimally destructive protein-sensitive SHG 

microscopy and Raman IR spectroscopy. The collections described above supplied 

samples of each bone listed in the Chapter 2 Tables, plus those described in the text above 

and summarized in one large Google doc spreadsheet
3
. No whole bones were supplied—

only bone fragments. Some samples, in particular dinosaur bones, were quite large, while 

most were very small and relatively fragile. 
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Figure 2.15 | Sample photographs, using GDFM 18.001, an Edmontosaurus annectens femur 

showing minimal mineralization. a, Unaltered photograph using light box, including its unique 

“I.D. Card,” of the portion of GDFM 18.001 on loan. Each card records basic collection data 

duplicated onto a master spreadsheet. Card data include Specimen Number (Field number, 

Catalogue or Accession number), Taxon, Date Recovered, Date Prepared, Location (of 

discovery), Stratigraphy (either its geologic Age or archaeological context), Formation 

(geological), Treatment or Preparations (such as glues or coatings added), Collector’s name, and 

miscellaneous Notes. b, GDFM 18.001 in its plaster field jacket made during excavation in 

September 2017 and showing a length of approximately 96.5cm. c, Locally held fragment of 

GDFM 18.001 showing a portion of still-white exterior cortical bone. Photograph shows 

background white-balanced and scale bar digitally inserted. d, Locally held fragment of GDFM 

18.001 showing interior, still largely porous trabecular bone. Photograph shows background 

white-balanced and scale bar digitally inserted.  

 

Large bones were first trimmed down to more manageable fractions using two main 

methods, each appropriate to the size, shape, and preservation state of the bone or fossil 

bone. In one method, a hacksaw was used to score the bone, or weaken it in one area so 

that a hammer blow would break off a chip. In this case, the freshly exposed interior of 
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the bone, not the parts exposed to the saw blade or hammer head, were used for further 

analyses. This method worked better for hardened, mineralised fossil bone, but due to the 

fracture-resistant structure of bone, resulted in very irregular sizes and shapes. In another 

method, a Neiko diamond dust hole saw (coring) drill bit, of ½” diameter was used to 

extract small cores. This method worked well for bones with moderate to very sturdy 

integrity, as poorly preserved or densely permineralised bones tended to powderise under 

the percussive force of the drill bit, even at low speeds. No lubrication was used in an 

effort to minimize contamination. Future attempts at coring will utilize deionised water as 

a lubricant for fragile or brittle samples. 

Once trimmed to roughly finger or thumb tip size, each bone sample was carefully 

cut into thin sections using a Buehler IsoMet low speed precision cutting machine 

equipped with a circular diamond blade which was generously loaned by the Institute of 

Ageing and Chronic Disease, University of Liverpool. Where possible, level and smooth 

slices sized appropriately for mounting on glass microscope slides were obtained. Bone 

slices were mounted by facing the smoothest and flattest surface upward, then gluing the 

rougher surface against a standard glass slide using a cyanoacrylate glue. Both SHG 

images and Raman spectrographs of the glue were collected as controls. All mounted 

slides were stored at 3C.  

 

Specimen number Taxon, description 

Holocene ↓ 

 
  

NP14-4-402Pagets (field#) Homo sapiens right femur, proximal shaft 

NP14-4-402Non-pagets (field 

#) Homo sapiens right femur, central shaft 

NP77_109_34 (field #) Bovine radius 

NP77_109_32 (field #) ? 

NP77_109_5_1 (field #)  Bovine radius 



63 
 

NP77_109_5_2 (field #)  Bovine tibia 

NP77_109_5_3 (field #)  Bovine femur 

NP71_12_9 (field#)  Homo sapiens ulna 

NP71_13_9 (field #)  H. sapiens fibula 

NP73_34_81 (sk101) H. sapiens rib 

NP77_109_52 (field #) Bovine humerus 

XA102_2001_307_91_3 

metatarsal Sus scrofa proximal metatarsal and 50% shaft 

XA102_2001_307_91_3 Rib Sus scrofa rib shaft 

XA102_2001_98_jaw Sus scrofa Mandible frag with erupting molar 

XA102_2001_98_ischium Sus scrofa Ischium (Unfused pelvis) 

  
Pleistocene ↓ 

 

  
EHRC90002 Megatherium Ischium frag 

EHRC90001 Camelid 

EHRC90005 Mammoth  

  
Mesozoic ↓ 

 
  

CM000088 Stegosaurus 

CM021728 Diplodocus longus 

CM000094 Diplodocus carnegii 

HRS08267 Edmontosaurus annectens bone fragment 

HRS26095 Edmontosaurus annectens Caudal vertebrae 

HRS19114 Unknown 

HCTH06 (GDFM12.001a Triceratops horn core, 40in long 

GDFM03.001  Triceratops femur 

GDFM08.011  Triceratops femur 

GDFM04.001 Hadrosaur femur, Hell Creek 

GDFM18.001 Edmontosaurus annectens 

GDFM12.004 Unknown 

EHRC90003 Triceratops brow horn 

  
Paleozoic ↓ 
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Table 2.5 | Total collection summary.  

 

Each stored sample is labeled with its accession number and some basic collection 

data, perhaps most importantly its taxon. These were systematized to an online local 

specimen collection catalogue
3
 with the following columns: Specimen number, 

Repository, Taxon/Description, Stratigraphy and Formation, Location, Date of 

excavation, Excavator, and Notes. Table 7 summarizes two of these 8 columns and 

includes all the samples used in this project, grouped by sedimentary superposition. It 

includes some sediment samples for negative controls (total N = 35). This catalogue of 

bone samples on loan to UoL facilitated efficient access for storage and further analysis. 

 

1 Best Practice Guidelines for Repositing and Disseminating Contextual Data Associated 
with Vertebrate Fossils. Society of Vertebrate Paleontology (2016). 
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3 Thomas, B. Catalogue Data for Fossils on Loan to Brian Thomas/University of Liverpool, 
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Controls ↓ 

 

  
Cyanoacrylate 

 
Apatite crystal 

 
HCF sediment 

 Palouse sediment 
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Second-harmonic generation (SHG) imaging and collagen  
 

SHG microscopy developed as a fortuitous offshoot of two-photon, also known as 

multiphoton, imaging. The latter utilises a fluorophore—typically attached chemically to 

a molecule of interest—and the former uses no artificial fluorophore. Both imaging 

techniques utilize the same basic principle. Two low energy incident photons impinge on 

molecules with certain electronic/structural configurations that absorb those photon 

energies and re-emit them as a single photon with twice the energy and half the incident 

wavelength.
1
   

By controlling the wavelength (and thus energy) of the incident laser light and using 

a detector tuned to half that wavelength, a confocal microscope targets just the 

wavelength emitted by the molecule of interest and leaves the rest of the visual field 

black. In SHG imaging of almost all biological samples, including bone, the target 

molecule is Type 1 collagen. Chapter 1 identified Type 1 collagen as by far the most 

abundant bone protein. The highly organized structure of fully formed collagen emits one 

photon for the two it receives at particular wavelengths. For example, two photons at 

920nm light excites collagen moieties to fluoresce one photon at half that wavelength, 

with its emissions detected from 420nm to 480nm.  

Confocal microscopy utilizes  a pinhole filter just prior to the detector to block out-

of-focus light that would otherwise blur the image. In contrast, multiphoton microscopy 

including SHG can collect all light emitted from the sample, even if it gets scattered on its 

way to the detector, since emission occurs only from a pinpoint within the focal plane. 

This permits the microscope’s detection setting to operate in non-descanned mode, 

meaning that the pinhole filter is removed. All the collected light gets assigned to the 

focus depth from whence it originated. This setup enables an increased signal intensity 

and hence image clarity from having gathered more emitted light. However, this effect is 
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extremely  mitigated by the dramatic increase in incident light intensity required to 

generate the likelihood of having two photons impinge on a sample at virtually the same 

time and place, an effect achieved with high-voltage laser pulses. Both multiphoton and 

confocal microscopy raster the tightly focused beam across the sample surface to generate 

an image for a defined area. Figure 3.1 diagrams the comparison. 

 
Figure 3.1 | Diagram of excitation scattering in confocal microscopy versus multiphoton 

microscopy. Confocal microscopy shown on the left uses a pinhole filter to reduce scattered light 

(green arrows) that arose from excitation that occurred outside the focal plane. Multiphoton 

excitation microscopy shown on the right can gather all excitation photons since the only 

emission occurs at the focal point. Image adapted from Piston
2
. 

 

SHG microscopy shares two general advantages with the multiphoton techniques that 

use fluorophores. They both permit high resolution and high contrast imaging. Another 

advantage of multiphoton microscopy is that it enables the collection of multiple channels 

simultaneously. Dichroic mirrors split light into multiple colors (wavelengths), or 

multiple laser light sources can be used. In either case, a separate detector is often used to 

collect each emitted wavelength for each channel, but an exception to this is described 
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below. These relatively recent technological advances have enabled multiple channel 

imaging to produce scores of stunning photographs of biological microstructures
3-6

.  

In addition to the general advantages listed above, two particular qualities make SHG 

imaging useful for studies of collagen structure, such as biomedical research into diseases 

that affect epithelial and connective tissues. SHG can penetrate a few mm into soft 

tissues, which is deeper than its predecessor, confocal fluorescence excitation 

microscopy
7
. Also, the use of lower energy (longer wavelength) incident light may reduce 

damage to tissues through phototoxicity
8
. SHG has been applied to fresh or live 

specimens in these contexts 
6,9

, but not yet to ancient bone.   

Depth of laser light penetration into either live or ancient bone is hindered by bone 

biominerals. SHG explorations described below suggest that light penetration falls just 

short of 1mm in ancient bone. However, SHG offers three distinct advantages for ancient 

and fossil bone imaging. These advantages lead to ease of use and reduced cost by having 

fewer requirements to produce an image. First and most important for controversial fossil 

proteins described in Chapter 1, SHG specifically targets Type 1 collagen. Second, SHG 

imaging does not require adding a fluorophore (dye) to the tissue, and thus collects a 

direct detection of Type 1 collagen remnants in bone. Some workers have objected to the 

use of immunohistochemistry to detect bone collagen in dinosaur bones, for example, on 

the basis that it technically does not directly illuminate the primary molecule but depends 

on an antibody to bind to that target
10

. Direct detection in ancient and fossil bone by SHG 

imaging could test this type of objection.  

A third distinct advantage of confocal laser scanning microscopy applied to ancient 

fossil bone imaging is that the technique detects very small amounts of fluorescing, or in 

this case multiphoton-emitting, biochemistry. In principle, older bones should have 

smaller amounts of endogenous protein. It is possible that SHG imaging can directly 



73 
 

image, without the loss of target molecules inherent in extraction protocols, traces too 

faint for other methods to detect at all. This project reports the first results of SHG 

imaging applied to ancient bone.  

 

SHG instrumentation 

SHG imaging was performed using a two-photon Zeiss 780 Upright Examiner Z1 

laser scanning confocal microscope assembly, pictured in Figure 3.2. The instrument is 

maintained at the Live Cell CORE Imaging facility at the University of Texas 

Southwestern Medical Center in Dallas, Texas. A Coherent Chameleon titanium:sapphire 

pulsed laser was set to 920 nm for excitation of the SHG channel. Laser power at the 

specimen was approximately 13 mW and was selected subjectively, based on the 

principle of balancing increased signal with the decreased contrast that comes with 

increased laser power. Laser power was also selected to strike a balance between the very 

strong collagen signal seen in fresh bone under low power versus the very weak signal 

seen in ancient bone under higher power. Mounted bone samples were imaged with a 

Zeiss Plan-Apochromat 10×, NA =0.45 dry objective lens.  

 

 
Figure 3.2 | Ziess 780 upright confocal microscope. a, Side view captures the top of the 

Chameleon SHG laser (dark grey box) in the foreground, the microscope upper body, and the 

control desk on the right.  b, Front view of the main microscope body. The light-resistant black 

box that covers the stage is seen below the binocular. The multichannel Zeiss BiG detector is seen 

on the left side of the binocular. Black hoses outfit the light resistant box with gas and 

temperature exchange features for live cell imaging.  
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The microscope’s upright configuration records reflected light detection. SHG 

emissions were collected from 420 to 480 nm. For most images, a second channel was 

collected to detect autofluorescence emissions from 500 to 550 nm. Band-pass filters 

were mounted in a standard P&C filtercube. The SHG emission signal was collected at 

458 nm (roughly half the incident wavelength) and a parallel autofluorescent signal was 

collected at 760 nm using a dual channel Zeiss LSM Binary GaAsP (BiG) detector. This 

detector uses gallium arsenide-phospide (GaAsP) in its photomultiplier tubes. The BiG, 

shown in Fig 3.2, can collect images at two different wavelengths simultaneously using a 

beamsplitter with two integrated PMT’s.  

Autofluorescence reveals cellular components that include various lipopigments and 

vitamin derivatives
11

 as well as aromatic amino acids
12

 useful for comparison against 

collagen distribution within bone. Fig 3.3 shows a cross-section of modern cortical bone 

from a proximal bovine femur. An SHG-only image in Fig 3.3a compares with a 

composite of the SHG plus autofluorescent signals in Fig 3.3b. Modern bone retains a 

strong red signal that indicates dense collagen protein packing. Most of the ancient bones 

imaged for this project showed faint red signals that indicate small collagen traces. 

Therefore focal planes and bone regions for ancient bone samples were selected to 

include sufficient collagen to visualise within the viewing frame. For most images, frame 

sizes of 1932 × 1932 pixels were rastered at 5 s speed, taking the average of 4 reads per 

line. This setting reduces noise by averaging out random voxels in the detector.  
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Figure 3.3 | Comparison of second-harmonic generation (SHG) only and a composite of 

SHG and autofluorescence channels using modern bone. Dark areas to the left and right of the 

colored area represent out-of-focus regions. a, The SHG channel shows abundant Type 1 collagen 

in red. b, The composite of both channels reveals green autofluorescent biochemical components 

in most of the spaces between collagen. The scale bar is 200 µm, with both images at the same 

scale. The intensity threshold for both channels was set from 0 to 75. Colors were artificially 

assigned. Narrow, diagonal, parallel lines are interpreted as Buehler diamond saw tooth marks.  

 

Toward the end of this research project, a second instrumental setup was sought that 

would add perspective to ancient bone SHG images. The SHG signals from dinosaur bone 

were so faint and tiny that they did not communicate context. Therefore laser reflection 

images of bone surfaces were captured and rendered in black and white using a 561nm 

laser at 6.9mW power. The pinhole aperture was set to its widest setting, which spanned 

79.3 µm. With the dichroic mirror removed, the detector range spanned 415-735nm. 

These settings basically allowed a widefield image that captured the uppermost surface of 

each bone sample. Fig. 3.4 uses the EHRC90002 ice age Megatherium (see Chapter 2 for 

details) as an example to compare the widefield image with the corresponding red/green 

SHG/autofluorescence image.  

The widefield and SHG areas captured in Fig. 3.4 overlap exactly and were obtained 

in the following way. First, the upper bone surface was focused under the widefield 

setting described above, and an image was captured. Next, the microscope settings were 

changed to SHG settings without moving the stage, and after another minor focus a SHG 

image was captured. The most obvious feature of Fig. 3.4a is its extraordinarily 
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diminished red signal as compared to Fig. 3.3. This feature is explored and discussed 

below using many other samples, including dinosaur bone. The scarcity of collagen in 

ancient samples, as illustrated in Fig. 3.4a, prompted the widefield setup shown in Fig 

3.4b.   

 

General SHG observations 

The comparison shown in Fig. 3.4 revealed two general observations relevant to SHG 

imaging of ancient bone. Arrows and circles highlight four of many regions where divots 

or pits occur in the bone surface. Arrows point to collagen shining through tiny gaps 

where apatite is absent. (See the next section and Appendix 1 for a rigorous 

demonstration that SHG does indeed detect ancient bone collagen.) The circles indicate  

 
Figure 3.4 | Comparison between widefield reflectance and second-harmonic generation 

(SHG) images of ice age Megatherium EHRC90002. a, Widefield bone surface illuminated 

with 561nm laser. The intensity threshold ranged from 15 to 150. b, Red SHG/ green 

autofluorescence composite of the same bone surface as that imaged in (a). The intensity 

threshold was set from 0-70 for both channels. The scarcity of red signal correlates with paucity 

of collagen. Arrows indicate pits within which slightly subsurface collagen remnants are visible. 

Circles indicate pits within which no collagen appears. The scale bar is 400 µm. 
 

two pits from which no red signal is evident. Thus, deeper, more protected microregions 

within bone appear to afford some measure of protection for ancient collagen. Second, the 



77 
 

visibility of the collagen at depth rather than upon the outermost bone surface is 

inconsistent with the hypothesis that the SHG signal represents contamination from some 

exogenous collagen source. 

Another general observation from SHG images has to do with the pattern of 

collagenous remnants in ancient bone. Fig. 3.5 shows two typical SHG images of bones 

taken from British sites. The distribution of collagen remnants seems to follow a 

randomized pattern, with blotches of red signal sprinkled throughout the bone. These tiny 

remnants possibly represent areas that originally had the densest collagen deposition 

when the animal was buried. Fig. 3.5a dates back to the Roman invasion, and Fig. 3.5b 

represents a burial made about a millennium later. Since the latitude and climate were 

similar for these samples, the diminished collagen signal in the Roman Era porcine jaw is 

attributed to its longer burial time.  

 

 
Figure 3.5 | SHG images of two typical medieval bones. a, Widefield bone surface merged with 

SHG channel of Roman Era porcine jaw XA102_2001_98jaw. The intensity threshold of the 

widefield channel ranged from 15 to 150, and that of the SHG channel from 0-75. Oddly, the XA 

bones from the British votive site retained almost no autofluorescent molecules, so the widefield 

image was merged for context. This reveals an unexplained lack of correspondence between 

collagen and bone surface patterns like pits. b, Red SHG/ green autofluorescence composite of 

medieval human femur NP14-4-402. Both images are to scale at 200 µm.  
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A final general observation from these images is that the SHG signal can vary widely 

in bones of similar age, and even of similar settings. For example, Fig. 3.6 includes three 

different views of the same bone surface taken from a Pleistocene camelid EHRC90001 

and compares them with a Pleistocene Megatherium EHRC90002. The more abundant 

red signal in the camelid shows much higher collagen content than that which remains in 

the ground sloth. Although they were deposited at very roughly similar times, this pattern 

makes sense in light of the climate differences between the two burial sites. The camelid 

was deposited at latitude 45deg 39' 37", whereas the sloth was about six degrees closer to 

the equator at latitude 39deg 19' 10.8". Heat accelerates collagen decay, and the sloth was 

in a warmer climate, hence its much lower collagen signal as seen in Fig. 3.6.  

SHG only detects fully formed collagen fibres, which range from 0.3-300µm in 

diameter
13

. This leaves the smaller collagen components (collagen fibrils, tropocollagen, 

and collagen-derived peptides) undetected by SHG. Thus, even though SHG is very 

sensitive to the presence of any fibres present
14

, collagenous components could persist 

even in bones with no SHG signal. However, loss of target molecules through 

inefficiencies in collagen extraction protocols make recovery of faint traces of collagen’s 

smaller components technically challenging. Overall, SHG imaging appears to offer the 

first look at the shape and distribution of in situ collagen in ancient bone.  

 

Digital image processing 

Zeiss Efficient Navigation (ZEN) software was used to control the microscope 

parameters and capture raw images into the “.czi” file format. Open source ImageJ 

software package Fiji
15

 was used to process the images. Raw images from each channel 

(458 for SHG and 760 for autofluorescence) captured a full range of intensity from 0 to 

255. Fiji was used to adjust pixel intensity of each channel from 0 to 75 for most images. 
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Figure 3.6 | Two Pleistocene bones from different latitudes show variable collagen 

preservation. a, Composite SHG/autofluorescence of EHRC90002 Megatherium fossil found at 

45 degrees north latitude. The bar-shaped artifact may not represent collagen, since it does not 

have the same blotchy appearance characteristic of other samples, and it is much larger than the 

tiny red specks of more probably collagen remnants. The intensity threshold of the red channel 

ranged from 0 to 75, and from 0-135 for the green channel. b, Widefield reflectance image also of 

the EHRC90001 camelid fossil found at a cooler climate at 39 degrees north latitude. The 

intensity threshold ranged from 12-120. c, SHG-only image EHRC90001 shows much more 

collagen than (a).  The intensity threshold ranged from 1-135. d, Composite of (b) and (c). Scale 

bar equals 100 µm.  
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Early in the course of this project, this range seemed to maximize the collagen plus 

organic signals against the background while adjusting as little of the original data as 

possible. However, this minimalist approach resulted in dim, dark images, especially of 

the very faint red traces in the oldest bones. Therefore, later efforts, also using Fiji, 

increased brightness even more. It was decided that instead of landing on a uniform pixel 

intensity range for all images as is common in the literature that describes images of live 

or modern samples, the intensity range would be adjusted to make each individual image 

more clearly visible. Each particular intensity range is noted in each figure caption.  

Fiji was also used to merge the SHG and autofluroescence channels, and to merge 

SHG and widefield reflectance channels. Variations of the following procedure were 

used. First, the brightness ranges of each channel were adjusted individually to balance 

disparate intensities from the two channels for the purpose of visualizing SHG. For 

example, modern bone (Fig. 3.3) had so much collagen that its red SHG signal 

overwhelmed the autofluorescence. Older bones had dramatically less collagen content 

and hence dramatically dimmer SHG than autofluorescent signals. For example, Fig. 3.7 

shows two differently processed ouputs from the same original image of a medieval 

human femur. A high  intensity threshold for the autofluorescence signal colored green in 

Fig. 3.7a contrasts with that green signal diminished relative to the SHG colored red in 

Fig. 3.7b. Therefore, their hues were arranged to enhance the red SHG signal from faint 

collagen traces. Using the image color channels tool in Fiji, images were split or merged 

as appropriate. Merged images were then flattened, scale bars were added, and the 

resultant images were output as “.jpg” files.  
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Figure 3.7 | Channel intensities emphasize various components of SHG/Autofluorescence 

images in medieval human femur NP14-4-402. a, Scale bar 200 µm. Red intensity threshold 0-

55, green 75-255. b, The same source image as in a, with the same red channel intensity at 0-55, 

but with the green channel intensity threshold set from 150-360.  

 

The potential for SHG imaging in combination with image processing to estimate the 

quantity of Type I collagen remaining in ancient bones from various times and places was 

illustrated using Fiji to calculate a Collagen Area Ratio (CAR) as per Chiu et al.
16

. This 

effort to generate a collagen decay curve used carbon dated bone samples. The results are 

described in the section below, “Use of SHG to construct preliminary collagen decay 

curve.” The area of collagen was estimated as the number of “red” voxels, defined as all 

hues within 0-37. All other hues were excluded. All data were tabulated in a spreadsheet. 

Total organic area was estimated as the number of voxels of all hues in the region of 

interest with brightness above 20 (i.e., red and green, but not black).  

To render Z-stacks as 2D images that fit the format of figures for print, each .lsm file 

was first converted to an 8 bit image. It was processed using the default settings on the 3D 

viewer plugin that comes bundled with Fiji (ImageJ 1.52b). The display setting was set to 

“surface plot 2D” with bounding box and coordinate systems selected. The resulting 3D 

image was rotated to a desired orientation and a snapshot was taken.  
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Does SHG detect ancient bone collagen? 

An evaluation of whether or not SHG truly detects collagen in ancient samples was 

undertaken. Due to the controversial nature of collagen persistence in some fossil bones, 

the maxim that extraordinary claims require extraordinary evidence was adopted in an 

attempt to prove the negative case. Thus, evidence was sought for collagen contamination 

from microbe or animal infiltration, field handling, sample preparation, or laboratory 

technique. The first step in this process was to  employ protein detection and collagen 

identification means other than SHG to help determine whether or not the SHG signals in 

ancient bones actually reveal proteins instead of some unknown contaminant or 

component. In principle, each collagen-positive result helps nullify the hypothesis of 

exogenous SHG-signal sourcing.  

Four independent techniques were used, including the “gold standard” of protien 

sequencing, collagen extraction for radiocarbon dating, Fourier-transform infrared (FTIR) 

spectroscopy, and Raman spectroscopy. Discussion of collagen extraction for radiocarbon 

dating is given in Chapter 6: Radiocarbon. In brief, carbon dating was performed at least 

one time on one of one Paleozoic, three of nine of  Mesozoic, two of three Pleistocene, 

and 10 of 19 Holocene specimens. Of these, radiocarbon from the collagen fraction of 

bone was found in zero Paleozoic, three Mesozoic, one Pleistocene one of three ice age 

specimens, and all 10 Holocene specimens tested. Some of those specimens with 

insufficient collagen were analysed for carbon isotopes within their biomineral fractions. 

The spectroscopic techniques and their results are described in Chapter 4:  Infrared and 

Raman spectroscopy. In brief, these spectrographs detected faint but characteristic peaks 

attributed to vibrational modes of protein-specific bonds.  
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Three main reasons led to the selection of medieval human rib NP73_34_81 from 

Skeleton 101 for direct comparison between SHG, collagen extraction for radiocarbon 

dating, and protein sequencing. First, the bone had quality preservation, as evidenced in 

its tan coloration and relative integrity. Second, its more recent archaeological setting 

promised a higher yield from protein extraction protocols. Last, the human proteome 

databases are robust and facilitate accurate protein identification. 

Protein sequencing was performed commercially by the Advanced Proteomics 

Facility at the University of Oxford. Samples were prepared in collaboration with 

researchers R. Layfield, D. Scott, and B. Shaw from the University of Nottingham as 

described in Thomas et al. (2017, appendix 1)
17

.  Following Jiang et al. (2007)
18

, 

approximately 50 mg of bone powder was demineralized in 1.2 M HCl. It was incubated 

sequentially with extract buffer 1 (100 mM Tris, 6 M Guanidine-HCl, pH 7.4), extract 

buffer 2 (100 mM Tris, 6 M Guanidine-HCl, 250 mM EDTA, pH 7.4) and finally 6 M 

HCl. Following each extraction step, the bone powder was pelleted by centrifugation at 

16,000g for 10 min at 4 °C, then washed in deionised water. The supernatant was 

discarded, with the exception of the 6 M HCl extract, which was utilised later either by 

SDS-PAGE using a 5–20% polyacrylamide gradient gel and visualised with silver-

staining, or taken forward to MS/MS analysis. For the latter the 6 M HCl extract was 

digested with trypsin according to a modified Filter Aided Sample Preparation (FASP) 

strategy
19

, with subsequent LC-MS/MS analysis carried out using a Dionex RSLC nano-

HPLC system and a Thermo Scientific LTQ-Orbitrap-Velos mass spectrometer following 

Scott et al. (2016)
20

.  

The .raw data file obtained from the LC-MS/MS acquisition was processed at the 

University of Nottingham School of Life Sciences using Proteome Discoverer (version 

1.4.0.288, Thermo Scientific). Mascot (version 2.2.04, Matrix Science, Ltd.) was used for 
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file searching against the UniprotHuman_2015_02 database (unknown version, 67,911 

entries) assuming the strict trypsin digestion
21

. The peptide tolerance was set to 10 ppm  

 

 

Figure 3.8 | Collagen sequence in medieval human rib bone NP73_34_81 (SK 101). a, SDS 

PAGE of ~700-year-old human bone protein extract still shows a visible protein smear, consistent 

with endogenous collagens. b, SK 101 had a 59% sequence coverage of the human collagen 

alpha-I chain. c, SK 101 had a 65% sequence coverage of the human collagen alpha-II chain. 

From Thomas et al.
17

. 
 

and the MS/MS tolerance was set to 0.02 Da. Fixed modifications were set as alkylation 

of cysteine, and variable modifications set as deamidation of asparagine and glutamine, 

and oxidation of methionine and proline residues. Proteome Software’s Scaffold Q + S 

version 4.4.1.1 was used to validate MS/MS based peptide and protein identifications 

made in Proteome Discoverer
22

. Peptide identifications were accepted if they could be 

established at greater than 95.0% probability, with a minimum of two peptides required 

for protein identification.  

Protein extraction from NP73_34_81 was confirmed by SDS PAGE analysis, which 

demonstrated a characteristic protein ‘smear’, shown in Fig. 3.8a, that is consistent with 

the presence of collagens. Mass spectrometry-based protein sequencing revealed 

remarkable collagen preservation seven centuries post-burial, and identified numerous 
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peptide sequences corresponding to human collagen alpha-I (COL1Al, 59% sequence 

coverage, Fig. 3.8b) and collagen alpha-II (COL1A2, 65% sequence coverage, Fig. 3.8c).  

Fig. 3.9 includes an array of SHG images of bones of various ages. They reveal a 

general trend of diminished SHG signal with age, consistent with the idea that SHG 

reveals endogenous collagen. If SHG instead indicated exogenous material, chances are 

slim that the material would mimic aging protein trends.  
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Figure 3.9 | Second-harmonic generation (SHG) images of weight-bearing and low-stress 

bones from four taxa. Collagen SHG detection is shown in red, and the green shows 

autofluorescence of mostly organic, non-collagen bone tissue constituents. The SHG (red) signal 

decrease with older bones is consistent with collagen decay over time. This sample set shows that 

SHG reveals collagen in a wide range of taxa, ages, skeletal positions, and settings. The scale bars 

equal 200µm. The brightness range for both red and green channels was set to 0-75. a-d, Weight-

bearing bones. a, A cross-section of cortical bone from the proximal diaphysis of modern bovine 

femur shows dense collagen bands that encircle osteons. b, Norton Priory bovine tibia 

NP77_109_5 cortical bone shows better collagen signal than the two human samples B and C, 

possibly because of Paget’s effect on postmortem bone decay, or differences between human 

burial versus trash deposition. c, Red collagenous remains in Norton Priory Pagetic human left 

ulna NP71_12_9 (SK 35) were confirmed by protein sequencing (see text).  d, Upper Pleistocene 

Camelid EHRC9001 from Oregon, USA, shows barely visible collagenous remnants. e-f, Low-

stress bones. e, The uneven surface of a thin section of medieval human rib bone NP73_34_81 

(SK101) from Norton Priory, UK, reveals significant collagen decay relative to modern bone, as 

well as irregular collagen deposition, presumably due to Paget’s disease. f, Pleistocene 

Megatherium ilium EHRC90002 from California, USA, shows the least collagen signal among 

the bones under consideration here. Figure modified from Thomas et al, 2017
17

.  
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Among bone samples for which SHG images indicated the presence of collagen was 

found positive identification of  protein-specific spectral characteristics (discussed later), 

clear collagen retrieval for radiocarbon analysis from many, and unequivocal collagen 

sequences from one. Taken together, these observations refute the contamination 

hypothesis. It was concluded that SHG does indeed detect ancient bone collagen, even 

very faint traces. However, this painstaking verification process did reveal rare instances 

where apparent SHG signals arise from non-collagenous sources. These caveats deserve 

description, and are given in the next section along with the results from negative 

controls.  

 

Images of negative controls 

One ancient bone sample showed apparent SHG signatures that lack collagen 

characters,  thus providing a negative control. In chapter 2, Fig. 2.7 a, b reveals fine-

grained, gray-colored clay matrix associated with ice age camelid EHRC90001. Fig. 3.10 

shows two microscopic perpsectives of this fossil. In one, the cleaned and smooth exterior 

bone surface was imaged (Fig. 3.10 a, b) to reveal abundant, striated collagen in red. 

Diffuse margins and variable intensities of the red shapes characterize collagen. In the 

other, the sediment-infilled bone interior was imaged (Fig. 3.10 c, d) to reveal 

sedimentary grains. They show no striated pattern, solid and bright intensities, and sharp 

margins. Diffuse margins and variable green intensities similarly characterize 

autoflurescent endogenous organics at the 760 nm excitation wavelength. This discovery 

leads to two suggestions. First, although the 920 nm excitation wavelength set for SHG 

imaging does produce reflectance at ~450 nm in at least one non-biological mineral, 

careful attention to the shape and nature of that emission pattern is sufficient to discern 

between inorganic mineral and collagenous signals. Second, future practicioners of SHG 
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on ancient bone will need to familiarize themselves with this caveat in order to avoid the 

error of concluding that SHG has imaged collagen when in fact it did not.  

 

 

 
 

Figure 3.10 | Genuine SHG of collagenous versus negative control non-collagenous SHG 

signal in ice age camelid EHRC90001. a, Widefield view of lean exterior surface of cortical 

bone shows minimal matrix adhesion. Scale bar 100 µm; intensity threshold 30-130. b, 

Composite of SHG and autofluorescence from the same clean surface as shows linear or blotchy 

shapes with diffuse margins characteristic of collagen. Scale bar 100μm and green channel 

intensity thresholds 0-75. c, Widefield view of matrix-infilled bone interior shows sediment 

grains. Scale bar 400 µm; intensity threshold 0-170. d, Composite of SHG and autofluorescence 

from the same surface as c shows red (and green) angular shapes with sharp margins 

characteristic of sedimentary grains.  

 

Apatite mineral was obtained as an additional negative control to compare with 

bioapatite in ancient bone. Crystals were imaged under the same microscope settings used 
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for all other SHG imaging, seen in Fig. 3.11. A very small (~0.5 g) crystal was imaged 

using the widefield settings as described in the above section “SHG instrumentation”, 

shown in Fig. 3.11a. It appears that crystal microsurfaces at certain angles reflect laser 

light. Fig. 3.11b shows a composite of SHG and autofluorescence settings. The negative 

result is consistent with the complete lack of organics in or on the unsterilized crystal 

apatite surface. This result is consistent with the hypothesis that SHG imaging detects 

biochemical collagen and not biomineral apatite when used to analyse ancient bone. 

Finally, two fossil matrices were analysed as negative controls for FTIR and Raman 

spectroscopy. Those results are discussed in Chapter 4:  Infrared and Raman 

spectroscopy.  

 

 
 

Figure 3.11 | SHG imaging of apatite mineral as a negative control . a, Widefield  view of 

irregular crystal surface. Scale bar 400 µm; intensity threshold 0-25. b, Composite of SHG and 

autofluorescence show no signal for either channel except noise.  
 

Use of SHG in attempt to characterise Paget’s disease of bone 

In the process of collaborating with Norton Priory, an opportunity arose to explore 

the usefulness of SHG as a forensics tool to investigate Paget’s disease in ancient bone. 

The medieval human skeletons at Norton Priory show a peculiarly high rate of Paget’s-

like disease symptoms, which include deformation of long bones (in particular, bowed 
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femurs and tibiae) and disorganised cortical bone. The disease is very rare today but ties 

to a defect in the deposition of collagen within bone matrix. An unfunded and informal 

consortium of investigators named the Paget’s Disease of Bone (PDB) working group  

 

Figure 3.12 | SHG images of modern bovine bone reveal healthy and normal striated 

collagen structure. a, Scale bar 200 µm. Red channel intensity threshold 0-100, green channel 0-

75. b, Close-up of area shown in gold box in a. Red channel intensity threshold 0-125, green 

channel 0-75. c, Scale bar 200 µm. Red channel intensity threshold 0-100, green channel 0-75. d, 

Area shown in gold box of c. Red channel intensity threshold 0-150, green channel 5-70. 
 

meets biannually to discuss research objectives and results. It was suggested that SHG 

imaging might discern Paget’s-related histological characteristics. Figure 3.12 opens this 

investigation by comparison with modern unaffected cortical mammal bone. SHG images 
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of the same modern bovine bone as shown in Fig. 3.3 were taken at two different scales 

two years after the image in Fig. 3.3. Both images show very similar collagen density and 

reveal the striated collagen that typifies healthy bone.  

Three Paget’s-affected and one non-affected human bones were selected, on the basis 

of gross morphology, by archaeologist Dr. Carla Burrell of the PDB group for processing 

and SHG imaging. Fig. 3.13 shows  SHG images each of human femur NP14-4-402 Non-

Pagetic and NP14-4-402 Pagetic (see chapter 2, Table 2.1) to contrast healthy with 

affected ancient bone. In general, this result shows a high intrinsic SHG signal. These two 

bones  
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Figure 3.13 | SHG images of medieval human femur bones NP14-4-402 Non-Pagetic versus 

NP14-4-402 Pagetic. SHG Pagetic versus non-Pagetic bone imaging results may suggest confocal 

microscopy as a useful tool to identify or investigate Paget’s in ancient bone. ImageJ despeckle 

function was applied to all six images. a, NP14-4-402 Non-Pagetic shows a relatively high quality 

collagen retention in this unstratified medieval bone from Norton Priory. Scale bar 200 µm. Red 

channel intensity threshold 0-55, green channel 15-360. b, A close-up view of a different region 

on the same prepared slide as a. Scale bar 200 µm. Red channel intensity threshold 0-150, green 

75-360. c, NP14-4-402 Pagetic shows a relatively high quality collagen retention in this 

unstratified medieval bone from Norton Priory. Scale bar 200 µm. Red channel intensity threshold 

0-75, green channel 75-360. d, Close-up of area shown in gold box of c. Scale bar 200 µm. Red 

channel intensity threshold 0-100, green channel 75-360. e, Autofluorescence (green) channel of 

NP14-4-402 Pagetic rendered in greyscale with the intensity threshold 0-200. Scale bar 100 µm. f, 

Autofluorescence (green) channel of NP14-4-402 Non-Pagetic rendered in greyscale with the 

intensity threshold 0-200. Scale bar 100 µm.  

 

also showed a high ratio of SHG-to-autoflurorescent signal (results not shown). Figure 

3.13 e and f isolate the autofluorescent signal of the NP14-4-402 affected and unaffected  

samples, respectively, and render them in greyscale. They appear to reveal more bone 

microstructural details than the SHG channel alone, at least for these two bones. Typical 

modern affected individuals have patchy, hole-filled, disorganised cortical bone structure. 

This might be discerned in the affected medieval bone images in Fig. 3.13 c, d, e, and f. 

However, variable decay since burial of within-bone organics could mimick the unhealthy 

bone patterning that characterizes modern PDB. Aditional samples from two separate, 
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affected human femur cortical bones (NP71-13-9 from skeleton of grave 28, and NP71-

12-9 from skeleton 35 of grave 34, see chapter 2; see Table 2.1) are shown in Fig. 3.14. 

Both of these bones have the advantage over the NP14-4-404 samples of having been 

excavated as part of more complete skeletons from stratified contexts, and have been 

radiocarbon dated.  

 

 

Figure 3.14 | SHG images of medieval human femur bones with Paget’s-like disease. a, 

NP71-13-9 shows very little collagen, and its uneven surface reveals too little information to 

discern the usefulness of this imaging technique. Scale bar 100 µm. Red and green channel 

intensity threshold 0-75. b, NP71-12-9 does not show PDB features that could not also be 

explained by diagenesis. Scale bar 100 µm. Red and green channel intensity threshold 0-75. 
 

In general, the disparity between the collagen content as guagued by the SHG signal 

coverage in NP71-13-9 seen in Fig. 3.14 a versus that of NP14-4-402 Non-Paget’s seen in 

Fig. 3.14 a illustrates the wide variation in collagen and thus bone preservation from 

microsites even within the same location. This variability, plus the lack of an objective 

pattern that could discern diagenesis from disease suggests that SHG imaging may have 

minimal usefulness to discern histological remnants of Paget’s-like diseases in ancient 

bone. More images from more samples, along with comparison to modern affected 

samples, will be needed to extract the patterns required to assess PDB.  
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Use of SHG to construct preliminary collagen decay curve 

Artificial protein decay experiments have confirmed that bone collagen decay 

matches a first-order, temperature-dependent model while hydrated
23

.  Diminishing 

collagen, primarily via hydrolysis and oxidation, accelerates gross bone structural decay.  

As collagen unravels, it releases its integrated plate-shaped hydroxyapatite crystallites. 

Bone thus becomes increasingly friable. A common method of quantifying bone collagen 

decay involves extraction, gelatinization, desiccation, and weighing the bone collagen 

fraction of total bone. Lower percent by weight collagen ratios generally correlate with 

older bones. This technique has even been used to generate collagen “ages,” but the 

results conflict with other age determinations and vary considerably with depositional 

environment, as noted above in reference to Fig. 3.14. In addition to time, factors 

including hydration, soil pH and salinity, and possibly the degree of peripheral 

mineralization influence collagen decay. SHG offers a new, minimally destructive 

method to estimate collagen content in ancient bone.  

The potential for SHG imaging in combination with image processing to estimate the 

quantity of Type I collagen remaining in ancient bones from various times and places was 

illustrated by estimating a CAR as per Chiu et al
24

,  calculated as: 

 

CAR = (SHG area of collagen ÷ total organic area) × 100 

 

The area of collagen was estimated as the number of “red” pixels, defined as all hues 

within 0-37. All other hues were excluded. Total organic area was estimated as the 

number of pixels of all hues in the region of interest with brightness above 20 (i.e., red 
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and green, but not black). CAR results for six bones were plotted against radiocarbon 

ages to test the feasibility of using this procedure for ancient bone collagen decay studies. 

Table 3.1 lists uncalibrated radiocarbon age determinations by bone fraction. Radiocarbon 

ages were determined for both fractions from samples from two bones; One medieval 

(NP77-109-34) and one ice age (EHRC90001). They show broad agreement between the 

two bone fractions in these samples, even though the error bars do not overlap. These  

 

Table 3.1 | Radiocarbon ages of select ancient bones. NP = Norton Priory; EHRC = Earth 

History Research Center; QUBC = Queen’s University Belfast (CHRONO); Beta= Beta Analytic; 

UGAMS = University of Georgia Accelerator Mass Spectrometer (Center for Applied Isotope 

Studies); AA = University of Arizona (Accelerator Mass Spectrometry Lab). *Skeleton 35, Grave 

34, excavated 1971, included Pagetic human left ulna NP71-12-9 as described elsewhere in this 

report.  

 

kinds of results are somewhat common, especially with bones over three millennia old, as 

discussed in chapter 7 Radiocarbon.  

Bone ID Cell Area 

(auto-

fluorescence) 

Collagen 

Area 

(SHG) 

Collagen 

Area 

Ratio 

Green 

intensity 

threshold 

Red 

intensity 

threshold 

 

Modern bovine 338826 335435 98.9991 0-75 0-75 

NP77-109-5Tibia 1876570 1418116 75.5695 0-75 0-75 

NP77-109-5Radius 302510 212917 70.3834 0-75 0-75 

NP77-109-34 110378 2627 2.38000 0-75 0-75 

NP71-12-9 60621 1933 3.18866 0-75 0-75 

EHRC90001 229550 1502 0.08003 0-75 0-75 

EHRC90002 59314 30 0.05057 0-75 0-75 

      

Table 3.2 | Collagen Area Ratio (CAR) data.  

Description 
14

C age bp (collagen) 
14

C age bp (apatite) 

Bovine tibia NP77-109-5 573± 23 (QUBC-24093)  

Bovine radius NP77-109-5  570± 30 (Beta-368271)  

Bovine radius NP77-109-34 934± 30 (QUBC-24091) 860± 20 (UGAMS-17385) 

Human left ulna NP71-12-9 840 ± 30 (Beta-425286)  

Camelid EHRC90001 12060± 89 (AA-106299) 10170± 30 (UGAMS-20474) 

Megatherium EHRC90002  20050± 40 (UGAMS-20475) 
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Fig. 3.15 plots collagen area ratio (CAR) versus radiocarbon age for eight bone 

samples from six bones that represent modern, medieval, and ice age time frames. The 

radiocarbon results include three bioapatite and four collagen extract determinations, as 

detailed in Table 3.1. The logarithmic curve associated to the data follows the formula y = 

424.98x-0.81 with an R
2
 value of 0.7255. This value of R

2
 indicates a statistically 

plausible level of agreement for the relatively small data set considered and is in keeping 

with similar studies relating to DNA half-life in bone.  Additional data would be required 

to test various hypotheses related to collagen decay regimes and in particular the 

identification of target samples from intra-comparable preservation conditions. These 

results illustrate one way in which future research could utilise SHG results to investigate 

bone collagen decay rates and regimes in various settings.  

 

Figure 3.15 | Collagen Area Ratio Versus Radiocarbon Age. SHG-derived Collagen Area 

Ratios of eight radiocarbon-dated bones (shown in Table 3.1) plus one modern bone suggest that 

SHG could help estimate post-burial bone collagen loss rates and patterns. Radiocarbon results 

include four collagen and three bioapatite extracts. The data were fitted to a logarithmic curve 

with an R
2
 value of 0.7255. 
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Two clear deficiencies in this analysis qualify it as preliminary research. First, the 

sample numbers are low. In principle, the more data the better, in any science. Ideally, 

several hundred data points would offer a more reliable sense of collagen decay, 

following Buckley et al (2008)
23

.  However, the high cost of commercial radiocarbon 

dating and the low supply of many, datable bone samples of widely variant ages and yet 

similar assumed diagenetic histories curtails this kind of investigation. Second, 

autofluorescence is probably not the best proxy for “total organic area” in calculating 

CAR. Initial attempts to approximate CAR used the green channel as a rough proxy for 

original organic area, but subsequent SHG images of ancient bones from different sites 

began to reveal a lack of reliable patterning in autofluorescent signal in ancient bones. 

Future attempts at producing collagen decay curves from SHG image data could instead 

use the density of collagen in modern cortical bone as a standard “total organic area” for 

CAR calculations, with the caveat that pore spaces in ancient bone samples should 

somehow be measured and then subtracted.  

 

SHG images of experimentally decayed blood vessels 

Investigation of experimentally decayed collagen is a necessary corollary to 

understand if and how collagen detection techniques apply to actually decayed collagen. 

Toward this end, a preliminary collagen decay experiment was conducted as an initial 

attempt to test the feasibility of SHG to quantify collagen loss over time. Chicken blood 

vessels, including the proximal brachial artery and the distal radial artery from wing, and 

the femoral artery from leg, were used for this experiment for two reasons. First,  blood 

vessel walls are comprised of epithelial tissue, which is over 90 percent collagen, and 

literature reviewed in Chapter 1 does describe controversial Mesozoic and Cenozoic skin 

remnants. An independent detection method has the potential to help resolve this 
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controversy. Second, chapter one specified the remarkable discoveries of intact blood 

vessels (complete with branches and red-colored erythrocyte-like elements) inside two 

dinosaur femora. A subsequent analysis of these kinds of vessels included a proposal that 

a class of iron-mediated organic chemical reactions called Fenton chemistry facilitated 

collagen cross-links during taphonomy, dramatically prolonging protein preservation
25

. 

SHG imaging plus other techniques used in this thesis have the potential to further 

investigate the feasibility of this hypothesis.  

The iron hypothesis study compared ostrich blood vessels soaked in various purified, 

concentrated iron solutions to water-soaked vessels. Iron-soaked vessels remained intact 

at room temperature after two years, whereas water-soaked vessels biodegraded in mere 

weeks. As a result, this iron preservation hypothesis quickly gained renown
26

. But this 

hypothesis leaves plenty of room for questioning. For example, invoking a natural 

environment to concentrate iron contrasts with laws of diffusion. Also, this explanation 

does not explain why the highly reactive Fenton chemistry would cross-link more 

proteins than it would destroy. High temperature decay studies similar to those used to 

estimate bone collagen decay rates
27

 could further test the iron preservation hypothesis if 

a technique like SHG could quantify collagen loss.  

Approximately 2 cm-long segments of blood vessel were mechanically separated 

from dissected chicken wings and legs. One set of each was maintained untreated at room 

temperature for one week, and another set of each was soaked in pH 1 solution for one 

week at 80 °C using a Quincy Lab, Model 10 oven. The high temperature was applied as 

a proxy for time, to artificially decay the collagen. The low pH was applied to ensure 

sufficient collagen degradation to make a clear enough difference in collagen integrity for 

SHG imaging to detect. Finally, one blood vessel was treated 1 mg/ml for 16h at 37 C 

with collagenase type 1 by MP Biomedicals with the prediction that SHG imaging would 
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detect little or no signal. Fig. 3.16 includes SHG-only images of the following: unaged 

chicken wing blood vessel, unaged chicken leg blood vessel, chicken wing blood vessel 

in pH 1 for one week at 80C, chicken leg blood vessel in pH 1 for one week at 80C, and 

chicken leg blood vessel treated with collagenase. 

Artificially decayed blood vessel collagen had a lower SHG intensity and coverage 

than that of untreated blood vessels, clearly showing that the aging treatments reduced or 

eliminated collagen content. The results visually confirm that SHG tracks collagen decay. 

This is also consistent with the conclusion noted above and in Thomas et al (2017) that 

SHG imaging tracks in situ collagen microdistributions in actually decayed (i.e., ancient) 

bone. The fact that SHG detected almost no collagen in the negative control of the blood 

vessel treated with collagenase confirms the efficacy of this technique in visualizing 

collagen. 

Finally, future use of SHG to characterize artificially decayed vessel or bone collagen 

will benefit from quantification, using digital image processing software, of intuitively 

visual results like these shown in Fig. 3.16. Initial attempts to isolate and quantify SHG-

only pixels have been unsuccessful. Percentages of collagen for each image shown in Fig. 

3.16 were calculated using: 

 

 (SHG-only pixels/total in-focus pixels) aged blood vessel area  × 100 

(ave. of 3 SHG-only pixels /total in-focus pixels) un-aged blood vessel area 

 

However, estimates for total in-focus pixels were highly variable, resulting in 

inconsistent and uninformative ratios. Future efforts may find  use of the widefield 

imaging settings described above to generate a more consistent estimate of the total area  
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Figure 3.16 | SHG images of artificially decayed and non-decayed chicken blood vessels. 

Scale bars 200 µm. a, b, Untreated chicken wing blood vessel reveals patches and fibrous 
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structures (red) consistent with collagen. Red and green channel intensity threshold 0-75. c, 

Chicken wing blood vessel soaked for one week at pH 1 and 80 °C. Red and green channel 

intensity threshold 0-25. d, Chicken leg blood vessel treated with collagenase reveals greatly 

diminished collagen content. Red intensity threshold 0-35, green intensity threshold 0-75. e, 

Untreated chicken leg blood vessel. Red intensity threshold 0-33, green intensity threshold 0-50. 

f, Chicken leg blood vessel soaked for one week at pH 1 and 80 °C reveals no collagen and no 

autofluorescent organics remaining.  

 

of the blood vessel, or “total in-focus pixels,” for both aged and unaged samples. In 

addition, the irregular dimensions of each cylindrical vessel caused out-of-focus portions. 

Possibly a procedure for flattening each vessel on its glass slide would improve SHG 

signal efficiency and result in a more repeatable proxy for “total in-focus pixels.”  

 

SHG images of pre-ice age fossils  

Three Mesozoic bone specimens were imaged in this study: HCTH06, GDFM03.001, 

and GDFM04.001. None of these bones accompanied a carcass; i.e., all were 

disarticulated. All had various degrees of darkening in exterior and interior coloration, 

suggesting some degree of diagenetic alteration. None showed features of peculiar 

preservation that would suggest a particular likelihood of collagen preservation except 

that all had mostly air-filled pores, as opposed to mineral or clay-filled, within the once 

blood-filled trabecular spaces. Figs. 3.17-3.22 show the first SHG images of dinosaur 

bones, revealing faint traces of collagen.  
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Figure 3.17 | Z-stacks of only the SHG channel for modern and fossil bone. The upper surface 

of each bone was digitally positioned at the bottom of each image (i.e., each one is turned upside-

down) to visualize the depth of SHG penetration into, and distribution of, bone collagen. Scale in 

microns. a, Modern bovine proximal femur cortical bone cross section reveals a dens lawn of 

collagen. The image contains 35 slices with a voxel depth of 1.800 µm. b, Cretaceous Triceratops 

horn core HCTH06 (the same as that described by Armitage and Anderson, 2013)
28

 reveals one 

deep and several more shallow collagenous remnants. The image contains 18 slices with a voxel 

depth of 1.800 µm.  

 

Fig. 3.17 shows the result of the first attempt at SHG imaging on dinosaur bone. The 

image was collected as a Z-stack of 18 slices using only the SHG channel. The 2D images 

in Fig. 3.16 were rendered using the “3D viewer” plugin that comes bundled with ImageJ, 

as noted above and displayed as “surface plot 2D.” Surprisingly, it did reveal some signal, 

albeit significantly diminished in comparison to the density of SHG signal from modern 

bovine bone. Fig. 3.17 inverts the bones’ upper surfaces to show a collagen-like signature 

as a spike that penetrated about 120 microns down into the tissue. The collagen signatures 

in Fig. 3.17 a penetrated to the same approximate depth, consistent with the hypothesis 

that SHG imaging captures ancient bone collagen even from disarticulated and generally 

unremarkable looking Mesozoic specimens.  
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Figure 3.18 | Two internal surfaces from Triceratops femur GDFM03.001. a, b, Image 

collected in December 2017. Composite of SHG (red) and autofluorescence (green) shows similar 

partial overlap as that seen in modern bone (Fig. 3.3) Extremely faint signal is consistent with 

very highly degraded collagenous remnants. Red intensity threshold 0-25, green 0-175. Scale bar 

100 µm. c, d, Separately prepared section of same bone sample imaged in May 2017. Composite 

of SHG (red) and widefield reveals localization of tiny collagenous remnants mostly situated 

within microscopic recesses of the bone’s exposed surface. Scale bar 200 µm.  

 

Two separate imaging preparations showcase two novel methods of adding context to 

SHG-only images of fossil bone. Fig. 3.18 a and b reveal a large degree of overlap 

between the faint signals in the red (SHG) and green (autofluorescence) channels. 

Notably, a small portion of SHG signal emerges independently of a colocalized 

autofluorescence signal in several spots. This pattern is visually similar to that of modern 
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bone as seen in Fig. 3.3, and medieval bone as seen in Figs 3.7 a and 3.9 b and c. This 

pattern fits the conclusion above that SHG imaging visualizes collagen remnants in 

ancient bone. 

The hadrosaur femur GDFM04.001 holds particular intrigue as one of three 

Mesozoic specimens from which minute amounts of collagen were commercially 

extracted for radiocarbon analysis, as described in chapter 7: Radiocarbon. Fig. 2.9 e 

shows a photograph of this specimen. Fig. 3.18 displays snapshots from a 3D rendering of 

a z-stack of 38 slices taken from GDFM04.001. Whereas the 3D renders in Fig. 3.16 

show only the SHG signal, the 3D renders shown in Fig. 3.18 show both the SHG and 

autofluorescence channels. Using the same ImageJ 3D viewer plugin, Fig. 3.19 displays 

visual data as a volume plot. In order to generate a higher resolution 3D render, 38 slices 

of one micron each were collected from GDFM04.001 instead of the 18 from HCTH06 

shown in Fig. 3.17. The resulting Fig. 3.19 reveals, for the first time, the distribution in 

situ of collagenous remnants (shown in red) from a Mesozoic dinosaur bone specimen.  
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Figure 3.19 | Two internal surfaces from Triceratops femur GDFM04.001. GDFM04.001; 38 

slices; Red and green 0-75. a, oblique; b, upper surface facing out. c, inverted d, side-on shows 

depth of laser penetration display as a volume plot. 

 

Several 2D SHG images of GDFM04.001 were also captured.  Fig. 3.20 shows one 

of them using a composite of SHG and autofluorescence onto a separately captured to-

scale widefield view of the identical bone surface. It shows faint traces of organics in 

microscopic recesses and dense area overlap of the red and green channels. Both of these 

features characterize other ancient bone samples shown above, for example EHRC90002 

shown in Fig. 3.4. Remarkably, the dinosaur material shows a similar or possibly an even 

higher coverage area of organic signals than   the much more recently deposited ice age 

specimens. Possibly the historic differences in taphonomy and diagenesis can help 

account for the remarkable collagen preservation in unremarkable samples.  
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Figure 3.20 | Composite images of GDFM04.001. a, A composite of all three channels (SHG, 

Autofluorescence, and widefield bone surface) show a high degree of red and green overlap. Gold 

box indicates area of zoom for b. Red intensity threshold 0-25, green 0-255, widefield 0-75. Scale 

bar 200 µm. b, A composite of red overlaid on the widefield reveals collagen in microscopic 

recesses. Red intensity threshold 0-25, widefield 0-75. Scale bar 200 µm.  
 

 
Figure 3.21 | Composite image of triceratops femur GDFM03.001. This bone was prepared by 

physical fragmentation instead of cutting as in Fig. 3.20. The collagen signal localizes to small 

pockets, similar to Fig. 3.20b. 
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Figure 3.22 | Interior and SHG images of hadrosaur vertebra HRS26095. Like GDFM03.001 

shown in Fig. 3.20, this bone was prepared by physical fragmentation to produce a small shard for 

microscopy. a, Whole bone photograph reveals darkened but still vacant trabecular spaces. b, 

SHG signals do not unequivocally localize to bone pockets. The circled collagen signal might 

localize to the dark divot just beneath it. The boxed, very faint collagen signal represents those 

that present to the bone surface. 

 

Figs 3.17-3.21 show very small collagen-specific SHG signals in three Maastrichtian 

bones from the Hell Creek Formation. Table 2 from Chapter 1 showed 14 separate 

techniques that independently verified original biochemistry in fossil bone. In this 

context, the discovery that SHG also detects faint traces of collagen in fossil bone both 

confirms the published findings described in Chapter 1 and suggests that SHG should be 

added to the Table 2 list. In addition, unlike all 14 other techniques used in the literature, 

SHG imaging reveals a 3D distribution of collagen within the bone.  
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Appendix 3.1: SHG imaging publication in journal Bone Reports. 
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Appendix 3.2: Publication in Advances in Biotechnology and Microbiology  
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Rationale for use of ATR-IR and Raman spectroscopy on ancient bone 

This research project involves a quest for novel technologies with potential to detect 

and characterise ancient bone proteins or other indicators of sub-fossilisation in ancient 

bone. At first, this quest focused on the two techniques that were initially available:  

second-harmonic generation imaging (SHG) and quadrupole mass spectrometry (QMS). 

Chapter 3 detailed novel results from SHG, but steep technical hurdles with QMS 

diverted focus elsewhere.  

A fortuitous interaction with members of the Paget’s Disease of ancient Bone (PDB) 

study group, which meets biannually at Norton Priory, introduced Fourier Transform 

Infrared spectroscopy (FTIR) as a third potential technique. PDB researchers from the 

School of Science and Engineering at Teesside University, UK, developed a procedure in 

2009 to use attenuated total reflectance (ATR) FTIR (ATR-IR) spectroscopy as a forensic 

tool to quantify collagen content in burned bone
1,2

. The reasoning followed that if FTIR 

can detect collagen in bones of interest to forensics, then the same procedure might apply 

to much older samples, for example to any faint collagen remnants in archaeological or 

even fossil bone.  

Soon afterward, my on-site supervisor in the United States and director of the 

University of North Texas Laboratory of Imaging Mass Spectrometry Guido Verbeck 

offered his ATR-IR device for use on ancient bone. He also suggested that if FTIR could 

detect remnants of endogenous organic functional groups, then possibly Raman 

spectroscopy could also.  Both methods of infrared spectroscopy offer several advantages 

for ancient protein investigations. First, no two molecules show the same spectra, 

enabling substance identification either by comparison with spectra in proprietary 

libraries or by comparing spectra of known substances manually. FTIR analysis of thin 

sections of modern bone have been used to generate collagen-specific surface images
3
. 
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Depending on the instrument, both are easy and inexpensive to operate. For example, 

hydration does not affect the IR spectra of molecules, so they can be measured in aqueous 

solution or at ambient humidity. Also, the peak intensities relate to the concentration of 

material present.  

Like FTIR, Raman spectroscopy also measures bond oscillations when the frequency 

of the incident infrared laser matches the frequency of the stretching, bending, or wagging 

oscillation.  Early in this project, use of Raman spectroscopy on ancient bone was 

unknown. After initial results were collected, further literature review revealed the use of 

Raman spectroscopy, though rare, to detect organic functional groups inside fossil 

material. Raman spectra were obtained to further investigate what they might reveal in 

ancient, including fossil, bone and shell, especially when compared with other techniques 

including SHG and FTIR on the same samples.  

Further, after most of the data were collected and upon even further literature review 

it was discovered that Raman spectra of modern bone reveal a distinct, faint, but singular 

peak from hydroxyproline, which is a collagen-specific amino acid. Since this peak 

appears very tiny in modern bone spectra, as discussed in the last section below, it may 

not be discernable at all in ancient bone which has lower collagen content. But if the 

hydroxyproline peak is discernable in ancient bone samples, then Raman spectroscopy 

could become a much more widely used tool to quickly detect bone collagen, especially 

using a portable device.  

 

ATR-IR and Raman spectroscopy instrumentation 

FTIR was applied by the Teesside team on several of the specimens collected for this 

project, as described in Chapter 2. The few specimens provided to them spanned a deep 

stratigraphic range that included modern, medieval, and fossil bone, plus a Devonian 
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brachiopod shell. Some of those results were included in the Bone Reports paper attached 

to Chapter 3 as Appendix 1. The following procedures were used to collect FTIR results 

from ancient bone, as noted in Thomas et al. (2017)
4
. 

FTIR spectroscopy of one modern bovine bone, medieval bovine tibia NP77_109_5, 

ice age Megatherium americanum EHRC90002, Triceratops horn core HTCH06, 

dinosaur fragment HRS19114, Triceratops femur GDFM03.001, and hadrosaurid femur 

GDFM04.001 was performed at Teesside University. A Perkin Elmer Spectrum 100 FTIR 

spectrometer with a diamond attenuated total reflectance (ATR) accessory was used to 

measure the infrared spectrum of each powdered bone sample. A few mg of bone from 

each sample were ground with an agate mortar and pestle and then placed in contact with 

the ATR accessory. The SPECTRUM™ software was used to record spectra over the 

wavenumber range 650 cm
−1

 to 2000 cm
−1 

at a spectral resolution of 4 cm
−1

. Each 

spectrum took an average of 16 scans.  

The ATR accessory collects absorbance data from liquids or solids, but it only works 

for solids that intimately contact the crystal’s upper surface. To achieve this for bone, 

small samples must be powderised. At Teesside, Islam and Thompson used an agate 

mortar and pestle to grind bone, but the mortar and pestle available at the Laboratory of 

Imaging Mass Spectrometry at the University of North Texas (UNT) used for subsequent 

tests was standard ceramic  (Coors). Figure 4.1 shows the Thermo Scientific Nicolet 6700 

FT-IR Spectrometer at UNT with the Smart iTX modular multiple-bounce diamond ATR 

accessory that was used to collect spectral data for 29 mostly ancient bone samples. 

Omnic software was used to record spectra over the wavenumber range 500 cm
-1

 to 4000 

cm
-1

 at a spectral resolution of 4 cm
-1

. This wider range than Thompson and Islam 

captured, at the cost of only a few more seconds per sample, what might someday become 

peaks of interest. Spectra shown in figures represent narrower ranges that zoomed in on 
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the peaks of immediate interest, namely that of phosphate and carbonyl. Each spectrum 

represented an average of 32 scans. This higher scan number slightly increased spectral 

resolution, again at a cost of a few more seconds per sample. Each FTIR spectrum was 

saved as a .csv file, then imported into the free graphing software Veusz (v. 3.0 © 2003-

2018 Jeremy Sanders) for visualisation.  

 

 

Figure 4.1 | The benchtop Thermo Scientific Nicolet 6700 FT-IR. a, Powderised ancient bone 

covers the diamond crystal surface beneath the anvil on the attenuated total reflectance module 

stage. b, The ATR module separated from the spectrometer exposes a tube containing the laser 

path. c, The ATR in context of the instrument. 
 

The ratio of the main amide peak height to the phosphate peak height represents 

relative amounts of collagen to bioapatite in a bone sample. Because collagen decays, its 

peak height should decrease over time. To confirm collagen decay in ancient bone, FTIR 

spectra were collected from three bone samples representing modern, Medieval (NP 

77_109_5), and ice age (EHRC 90002) time frames. Fig.4.2 shows the spectra for the 
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three bones. Thomas et al. (2017) used multiple collagen detection techniques to detected 

protein traces in most samples tested.  

 

 

Figure 4.2 | Modern, medieval, and ice age ATR-IR spectra show evidence of collagen decay. 

After Thomas et al. (2017).  

 

Fig. 4.2 is reproduced here from Thomas et al. (2017). It reveals a consistent peak 

height at 1035 cm-1, which corresponds to a phosphate stretch. This peak represents the 

crystalline, bioapatite fraction of bone that does not chemically decay over time with the 

systematic pattern of proteins. The peak at 1650 corresponds to a protein-specific 

carbonyl bond. Since Type I collagen dominates the biochemical landscape of fresh bone, 

and since myriad techniques have verified collagenous remnants in ancient and fossil 

bone, the carbonyl peak can be confidently assigned to bone collagen. Fig. 4.2 shows a 

systematic reduction in carbonyl peak height over time, consistent with collagen decay, 

except only three samples were included. Subsequent IR spectra were acquired in part to 

evaluate the consistency of this apparent trend.  
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Two preparation methods were used for Raman spectroscopy. In one, the laser was 

centered on a solid, smooth surface of cut and mounted cortical bone thin section. In the 

other, the laser was centered on a small (>0.5, <1.5 mg) sample of powdered bone. 

Powdered bone was carefully placed on a thin crystal constructed to cover a hole in the 

center of a 3-D printed, ~6 cm diameter round dish. Glass and plastics do affect Raman-

scattered light a little, but crystal has virtually no effect on the light. In this configuration, 

incident laser passes through the crystal portion of the bottom of the dish before it 

impinges on the powdered sample. The Raman shift was measured as scattered light. For 

data collection, an Almega XR Raman spectrometer integrated to an Olympus BX51 

microscope with spatial resolution down to 1 μm was used, essentially as per Huynh et al. 

(2015)
5
 and shown in Fig. 4.3. An excitation source of 785 nm, at 30% of 40 mW power,  

 

Figure 4.3 | Raman microscope and generalised setup. a, Olympus BX51 stage and objective 

are shown. Nanomanipulators beside the stage were not used. b, Generalised diagram of Raman 

microscope after Smith et al
6
.  

 

single transverse mode, high brightness diode laser was used. The laser power was not 

high enough to heat the samples enough to visibly affect them, whether powderised or 
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solid. The Raman signal was collected over the range of 1800–300 cm
−1

 using a 10x 

microscope objective with a numerical aperture (NA) of 0.25.  

 

FTIR and Raman theory  

Infrared spectra reveal which functional groups are present in a sample. This 

provides a solid starting point for identifying the chemistry, including the presence of 

proteins, in that sample. General infrared spectroscopy works on the principle that a 

chemical functional group will absorb a specific frequency of light that matches that 

functional group’s frequency of stretching, bending, or wagging. The instrumentation’s 

software calculates the absorbance spectrum of a sample by subtracting the light intensity 

absorbed by the sample from the background intensity. In FTIR spectroscopy, a broad 

spectrum of wavelengths is obtained for each sample all at once instead of by collecting 

the absorbance one wavelength at a time. Modern devices incorporate a version of the 

Fourier transform algorithm, which measures whether or not a frequency occurs within a 

particular wave function, to arrive at the unique spectrum for that specimen. 

An ATR is a unique method of gathering absorbance data whereby the infrared laser 

interacts with a sample at a short distance away from the laser beam itself via an 

evanescent wave. The laser is angled at 45° to the horizontal surface of the crystal, in this 

case a diamond. Laser intensity is donated to the sample via evanescence that penetrates 

to a very shallow depth above the diamond and into the sample. The detector is sensitive 

to the higher intensity losses that occur at wavenumbers that correspond to vibrational 

modes of chemical functional groups. The ATR-IR (FTIR-ATR) is user-friendly, cost-

effective, and requires only tiny amount (~0.5g) of sample.  

Fig. 4.4 shows standard IR peak ranges for a variety of organic functional groups. 

The two groups of interest for forensic analysis of ancient bone, which estimates time 
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since the decease of the vertebrate, are carbonyl (green) and phosphate (orange). A 

protein’s amide bond contains a particular chemical configuration (O=CH-NH-H) that 

includes a carbonyl moiety. As shown in Fig 4.4, the stretch peak for a variety of different 

carbonyl-containing molecular configurations occurs from 1600-1850 cm
-1

, but from 

1690-1640 cm
-1

 for the carbonyl on the amide bond, which is by definition protein-

specific
7
.  

 

Figure 4.4 | Infrared peak ranges for functional groups of interest to ancient bone protein 

detection. Thompson et al. (2009) developed a method for estimating collagen content in bone by 

taking the ratio of the carbonyl (green highlight) peak height to the phosphate (orange highlight) 

peak height.  

 

Degree of collagen preservation was estimated by calculating the ratio of amide bond 

stretching to bioapatite-specific phosphate stretching as per Thompson et al
1
.  The 

carbonyl stretch of the amide bond in collagen generates a spectral peak height at ~1650 

cm
−1

, and the phosphate stretch of the apatite fraction in bone generates a peak at ~1035 

cm
−1

. A higher value of the carbonyl-to-phosphate peak height ratio (carbonyl/phosphate, 

or CO/P) corresponds to higher molecular integrity of collagen. Table 4.1 lists the origins 

of ATR-IR peaks for bone, as per Thompson et al
2
. Various ratios of these peak heights 
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have been explored in efforts to detect contamination and measure the degree of alteration 

of both the organic and inorganic phases of bone material.  

 

Approximate FTIR 

peak wavenumber 

Vibrational mode, functional 

group 

 

565 v4 PO4 

605 v4 PO4 

632-650 OH group 

874 v2 CO3
2-

 group 

960 v1 (PO4) sym apatite 

1028-1100 v3 (PO4) apatite 

1400-1551 CO3
2-

 groups (lattice carbonate) 

1630-1660 Organic tissue and water 

3400 OH water 

3573 OH group 

 

Table 4.1 | Identification of typical peaks of interest on an ATR-IR spectrum of bone. v4 

(PO4) = O-P-O bend, v2 (CO3
2-

) = out-of-plane bend, v3 = P-O asymmetric stretch, v1 = P-O 

symmetric stretch.  
 

Raman spectroscopy mirrors FTIR. They both use infrared absorbance to identify 

organic functional groups. However, while FTIR scans samples more quickly by 

irradiating them with a range of wavelengths and then using algorithms to deconstruct the 

peaks after the fact, the Raman device available for these studies scanned the sample 

iteratively. But the key conceptual difference is that whereas infrared spectroscopy 

measures Rayleigh scattered light, Raman spectroscopy measures the Stokes shift. With 

Rayleigh scattering, each emitted photon carries the same amount of energy as the 

incident photons. The Stokes shift measures the difference between the energy of the 

emitted electron and the energy of the incident, or excitation, laser light. For every 

Stokes-shifted photon radiated, about a million Rayleigh-scattered photons radiate.  

Both techniques measure vibrational excitation. Infrared detects it directly, but 

Raman detects it by subtraction. The vibrational states that Raman spectroscopy probes 
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are the same as those that FTIR reveals, so they are similar. However, vibrations that are 

strong in an infrared spectrum involve a strong dipole moment and are usually weak in a 

Raman spectrum. Likewise, non-polar functional group vibrations that give strong Raman 

bands usually show weak infrared signals. Thus, use of both infrared spectroscopic 

techniques can provide a more complete picture of the molecular structures in a sample. 

At least three tactics were explored to mitigate the potential argument that IR 

spectroscopy might not adequately distinguish between carbonyl stretch peaks from 

endogenous protein versus exogenous carbonyls. In one, careful sample preparation was 

used, especially the acquisition of fresh, interior, unadulterated bone material and the use 

of clean utensils and sterile gloves throughout. As a second tactic, multiple, independent 

collagen-specific detection methods were used in parallel with FTIR and Raman. These 

results were published in Thomas et al. (2017), and showed that the same bones that had 

unequivocal collagen also had carbonyl peaks.  

These results suggested a trend that offers a third tactic. Those bone samples with 

visibly less pervasive SHG signals also had carbonyl peaks of decreasing heights. This 

trend is consistent with the well-characterized decay of bone collagen over time (see 

Chapter 1), and thus difficult to explain by exogenous proteinaceous sourcing, especially 

in view of the lack of evidence for any exogenous material being present in the freshly 

exposed bone interiors that were accessed for FTIR and Raman analyses.  

Infrared spectroscopy does not at present differentiate between functional group 

sources, but the significant challenges in assigning all or even most of these carbonyl 

peaks to sources other than the ancient bones themselves suggests that exogenous 

proteinaceous sources contribute at most only a small portion of the peak heights.  
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FTIR spectra of modern and medieval bone 

Medieval bone samples from Norton Priory were assessed using FTIR for collagen 

integrity. Based on the diminished collagen relative to modern bone that SHG images 

revealed (see Chapter 3), it was expected that FTIR should reveal a significant decrease in 

their CO/P ratios. Figure 4.5 combines the medieval bovine and human bone spectra 

alongside a modern bovine sample.  

 

Figure 4.5 | Raw FTIR spectra for nine medieval bones. Phosphate stretch and peak intensities 

were picked from the highest point near 1035 cm-1, and carbonyl stretch peak intensities were 

picked from the peak height known from the literature for all spectra.  
 

The most prominent peak within the region of these spectra displayed in Fig 4.5 is 

the bioapatite-specific phosphate P-O asymmetric stretch at 1035 cm
-1

. This stretch 

describes the resonance of alternating, adjacent oxygens relative to the central phosphorus 

within the phosphate. The peak lies within the broader apatite peak range shown in Table 

4.1. For tabulating the CO/P ratios, phosphate peak intensities were collected at the actual 

apex of each peak, whether or not it aligned perfectly with 1035 cm
-1

.  
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The carbonyl peak was much less distinct, and looked more like a shallow mound, 

even in the modern bone sample. Because of this, the carbonyl relative intensity for CO/P 

ratios was recorded at exactly 1650 cm
-1

. Table 4.2 below tabulates these results.  

Accession number Carbon Yrs CO/P  

XA102_2001/307 rib 2060 ± 30 0.1313549 

XA102_2001/307 metatarsal  0.1130435 

XA102_2001/98 jaw 2060 ± 30 0.1046114 

XA102_2001/98 ischium  0.1215163 

 

Table 4.2 | CO/P spread among associated Roman era porcine bones. Samples are described 

in Chapter 1 under Hallaton. Dates presented in carbon years before present, uncalibrated, with 

present equaling 1950 AD. The CO/P range among these four samples approximates its error. 
 

Specific spectra in Fig. 4.4 deserve attention. The two spectra for NP77_109_5_1, a 

bovine radius, and NP77_109_5_2, (Table 2.1) a bovine tibia, nearly overlap, as expected 

from their nearly identical origin and same context and trench. At a minimum, this shows 

that these spectra faithfully record meaningful in-bone data. Next, the default baseline 

algorithm in Omnic was applied to “NP71_13_9 baseline.” The function appeared to 

reduce peak definition and thus reduce information clarity, so it was not applied to other 

spectra. In comparison to modern bone, which Fig. 4.5 renders as a thicker line than the 

others, the relative intensities of all peaks in ancient bone samples appear exaggerated. 

This is due in part to the proportional shrinkage of the phosphate asymmetric stretch at 

1025 cm
-1

 of modern bone relative to the much higher intensities of that same peak in 

ancient bone samples. A probable cause of this effect is discussed in the next section.  

 

FTIR spectra of Roman era bone 

Porcine bone samples designated “XA” originated from a 2,000 year-old Celtic 

Briton votive site as described in Chapter 2. Because these were buried from 7-11 

centuries earlier than the medieval bones from Norton Priory, it was anticipated that the 
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CO/P ratios for these bones would be lower. This was the case, as the phosphate peak 

heights rose relative to medieval and modern bone samples (data not shown). This peak’s 

intensity increases with crystallinity, as discussed in Thompson et al.
2
, who observed an 

increase in crystallinity with heating that occurs as the original microscopic bioapatite 

crystals (described in Chapter 1) slowly recrystallize into larger structures during 

diagenesis. The diminishing phosphate peak heights in spectra in Figs 4.5 and others are 

consistent with the description of recrystallisation occurring over time, and thus behave as 

though time were a proxy for heat as it affects bone bioapatite.  

 

 

Figure 4.6 | Raw FTIR spectra for 4 Roman era bones. Porcine bones from Hallaton show 

increasing phosphate peak intensities even though they were carbon-dated to the same age (see 

Table 4.2 below).  
 

However, the relatively wide variance in phosphate peak heights for the four 

Hallaton bones shown in Fig. 4.6 are inconsistent with the recrystallisation over time 

hypothesis since all four bones were buried at the same time and place. During aging, 

hydroxyapatite crystals partly dissolve and recrystallize, with the smallest crystals 
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disappearing and the largest crystals growing
8
. Causes for the FTIR variation in these XA 

samples remain uncertain, but may be due to differences in sample preparation. For 

example, grain size differences may have arisen from the grinding protocol, resulting in 

subtle changes to IR-detected crystallinity. This hypothesis was tested and the results 

shown in Chapter 5. In an unpublished manuscript, Kontopoulos et al. show systematic 

shifts in both peak intensity and position caused by specific bone particle sizes. The 

authors call the phenomenon the Particle Size Effect on ATR-FTIR analysis of bone 

powder, and recommend specific new protocol “that significantly improves accuracy, 

consistency, reliability, replicability, and comparability of the data
9
.”  Their protocol 

includes two key steps that were not taken in the current analysis: Sieve the particles to 

select those from 20-60 µm, and use 3-5 mg of bone powder for each of three runs. Future 

research on ancient bone should benefit from this protocol standardization.  

However, although crystal size likely affects the CO/P ratio more than any other 

factor for ancient bone, variation in collagen decay plays an additional but smaller role as 

carbonyl moieties become oxidised. As collagen decays, it no longer barricades bioapatite 

crystals from migrating toward and merging with one another. Similarly, as bioapatite 

recrystallises, it can slowly expose collagen fibers to degradative factors like water which 

hydrolises organics. SHG images from Chapter 3, for example those shown in Fig 3.9, 

reveal highly variable collagen preservation quality from bones with very similar 

taphonomies. Therefore in addition to protocol variances, small differences in collagen 

preservation underground over time certainly affect CO/P ratios. Whatever the actual 

cause or causes, this result suggests that CO/P ratios are to be taken at present as only 

very rough proxies for bone protein decay over time.  

CO/P ratios were tabulated using these spectra and are shown in Table 4.3. Of 

interest is the wide variance in phosphate peak height even though these bones were all 
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collected from the same site with evidence of simultaneous burial in a single votive 

offering, and bearing the same radiocarbon age. These results indicate that whatever 

factors led to changes in IR spectra did not alter carbon isotope ratios, for example via  

Accession # 
14C age, bp, 

apatite 

14C age, bp, 

collagen or TOC 
CO/P 

Holocene ↓       

Modern  1 0.255673 

NP77_109_5_2   573 ± 23 0.087243 

NP71_12_9   840 ± 20 (tooth) 0.032053 

NP71_13_9   650 ± 20 -0.118255 

XA102_2001/307 rib   2060 ± 30 0.131355 

XA102_2001/307 metatarsal   2060 ± 30 0.113043 

XA102_2001/98 jaw   2060 ± 30 0.104611 

XA102_2001/98 ischium   2060 ± 30 0.121516 

Pleistocene ↓ 
      

      

EHRC90002 20050 ± 40 insuff. coll. 0.014039 

EHRC90001 10170 ± 30 12060 ± 89 0.115205 

Mesozoic ↓       

CM21728 39760 ± 240 26890 ± 90 (bulk) 0.056981 

HRS08267 41490 ± 160 insuff. coll. 0.171102 

HCTH06 (GDFM12.001a) 41010 ± 220 33570 ± 120 (bulk) -0.051153 

GDFM03.001 24340 ± 70 30890 ± 200 0.097723 

 

Table 4.3 | Radiocarbon results for bones samples with FTIR-based CO/P results. Data were 

used to plot Fig. 4.9. See Chapter two for sample identifications. Bp, “before present,” with 1950 

as “present.” Holocene data are reported as calibrated ages, and Pleistocene and Mesozoic as 

uncalibrated. TOC, “Total Organic Content,” refers to a generalised (i.e., not collagen-specific) 

extraction of organics that include collagens but exclude calcium carbonates from the biomineral. 

“Tooth” notes the assignment of 840 ± 20 carbon years to the skeletal remains from a tooth 

associated with the same individual. “Bulk” refers to a preparation that includes carbon both from 

organic and inorganic bone fractions. 
 

isotope exchange, as discussed in Chapter 6. On the other hand, the variances in 

phosphate peak heights for these Holocene samples yield a wide range in CO/P ratios and 

suggest that CO/P ratios do not always vary consistently over time, as discussed in more 

detail below. These four bone fragments with two carbon dates provided convenient 

material to inform an error bar that can be included in collagen decay curve estimates 
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based on FTIR spectra. The range of CO/P ratios in the Hallaton bones are taken as a 

rough proxy for error ranges in other bones that together share the same setting and age. 

Accordingly, Table 4.3 shows these CO/P ratios taken from the spectra in Fig 4.5 and the 

range of 0.02674 suggests an error for two-millennia-old bones of ± 0.01337. This 

number was applied as an estimated error bar in the Y-axis for all samples used in an 

FTIR-based collagen decay curve shown below.  

 

FTIR spectra of Pleistocene bone  

Only three Pliestocene bones became available during the course of this research, but 

they fill an important chronological gap in efforts to characterize bone collagen 

preservation and test the applicability of various techniques to residuals of ancient bone 

proteins. Fig. 4.7 shows these spectra. The mammoth and Megatherium bones were more 

fragile than the camelid, consistent with two other observations that indicate the camelid 

remains retain higher collagen content. First, the camelid CO/P is higher than the 

mammoth and Megatherium samples, at 0.1152 versus 0.05698 and 0.0140, respectively. 

Second, bone samples from both the camelid and Megatherium were submitted to the 

radiocarbon dating facility at the University of Arizona, which found sufficient collagen 

to proceed with the camelid, but insufficient collagen in the Megatherium. Added to these 

observations is the fact that the camelid was sourced from a much higher latitude and thus 

a much lower average annual temperature. Since higher temperatures are the primary 

means of accelerating collagen decay rates, the northernmost sample ought to preserve 

the most collagen, and it does. The trend among these three samples is therefore 

consistent with the hypothesis that CO/P ratios can track collagen decay trends. 
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Figure 4.7 | FTIR spectra for 3 Pleistocene bones from the American west.  
 

FTIR spectra of Mesozoic bone 

The next oldest stratigraphic selections to include at this point would represent 

Cenozoic remains. Unfortunately none of the handful of repositories involved in this 

research has been willing or able to supply any catalogued Cenozoic samples. This 

omission presents a chronological gap in efforts to more fully characterize collagen decay 

over time. However, the present data are sufficient to evaluate the effectiveness of bone 

collagen detection tools on biochemical remnants from Mesozoic and even older 

sediments, as listed in Table 1.1.  

The first test for the effectiveness of FTIR as an efficient ancient bone collagen 

detection tool was to apply it on ancient bones with unquestioned collagen remnants. 

These results were described in chapter 3 and published in Bone Reports, shown in 

Appendix 1. A second assessment of the method looks at peak profiles. As an example, 

Figs 4.5, 4.6., and Fig. 3 in Thomas et al.
4
 compare ancient with modern bone samples to 

show that although peak heights differ, both ancient and modern bone reveal similar 

profiles. Fig 4.8 shows a third assessment. Crushed dinosaur bone from the Cretaceous 
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Hell Creek Fm. of Montana was scanned alongside Hell Creek matrix that was collected 

on site, directly adjacent to the bones. The matrix has a consistency of dirty, well-packed 

sand.  

 

 

Figure 4.8 | FTIR spectra for four Mesozoic dinosaur bones from the Hell Creek Fm. 

 

Fig. 4.8 shows four Hell Creek (Maastrichtian) bone spectra plus the Hell Creek 

matrix spectrum in green. A broader portion of the spectrum than Figs 4.7 and 4.6 was 

included, as noted on the X axis, in order to visualise additional spectral characteristics. 

The figure clearly shows matrix peaks not present in bone, and bone peaks not present in 

the matrix, consistent with their fundamentally different compositions. 
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Figure 4.9 | FTIR spectra for two Mesozoic dinosaur bones from the Lance Fm. The lack of 

resolution above ~1000 cm
-1

 for these samples remains an anomaly, since procedures were 

consistent across all samples.  

 

Similar figure to Fig. 4.8, Fig. 4.9 compares two Lance Fm. dinosaur bone spectra, 

also from Maastrichtian strata, with Lance matrix. As noted in Chapter 2, the Hell Creek 

and Lance are equivalent strata. Thus, their spectra might share similar characteristics. 

Figs 4.8 and 4.9 reveal a peak in the matrix spectra at 790 cm
-1

 not found in bone. This 

can be assigned to aluminum oxide
10

. The spectra in Fig. 4.9 reveal similar discontinuity 

between sediment and bones. In particular, Figs 4.8 and 4.9 have a distinct carbonate peak 

at 880 cm
-111

, whereas the sediments do not. Taken together, the distinct differences 

between the sedimentary matrix on the one hand and all the bones on the other hand are 

consistent with the hypothesis that although many of these bone surfaces appear partially 

permineralised, their internal portions retain bone chemistry.  

 



142 
 

 

Figure 4.10 | Raw FTIR spectra of seven Mesozoic dinosaur bones. See Chapter two for 

sample identifications. All dinosaur spectra show much lower carbonyl (1650 cm
-1

) peaks than 

modern bone, consistent with highly or entirely degraded collagens.  
 

Finally, all Mesozoic spectra shown in Fig. 4.10 are compared to modern bone. All 

the Mesozoic bone samples show an increased phosphate peak intensity, discussed above 

in the context of medieval bones which exhibit the same feature. Fig. 4.10 includes two 

very darkly colored, and thus highly mineralised, Jurassic samples from Carnegie 

Museum (CM). Regardless of the apparent degree of mineralisation, these spectra 

conformed overall to those of Cretaceous remains. However, Fig. 4.10 reveals no 

carbonyl peak in either CM sample.  

Fig. 4.10 represents a close-up of the carbonyl peak region, a key peak of interest for 

forensic analysis of buried bone. Both of the Jurassic CM samples, as well as possibly the 

Cretaceous GDFM 03.001, have no semblance of a peak at 1650, consistent with zero or 

almost zero collagenous content in them. The peak or hump, as seen in the modern bone 

spectrum colored grey, is broad and shallow and ranges from ~1610 to 1710 cm
-1

.   
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Having merely two Jurassic samples are insufficient to assert any trend for the 

entirety of Jurassic remains. However, if additional FTIR analyses of Jurassic bone reveal 

flat lines that run through this broad 1650 region, then two explanations deserve 

discussion. First, it is possible that the additional time that Jurassic remains have lain 

underground prior to the later Cretaceous deposits would account for the absence of 

collagen, since the biochemical decays systematically over time
12

. However, multiple pre-

Cretaceous indicators of primary protein remnants including collagen as listed in table 1.1 

(for example the embryonic Lufengosaurus femur collagen
13

) suggest that time may not 

always play as critical a factor in preservation as expected. Instead or in addition, 

temperature plays a role according to artificial decay studies described in Chapter 1. In 

the discussion about Pleistocene bone results shown above in Fig. 4.6 it was suggested 

that samples from higher latitudes tend to retain more collagen, because of lower 

temperatures, than those in lower latitudes or elevations. A similar situation may exist 

between Glendive, MT and Dinosaur, Utah. The average annual temperature for all 

months in both cities is similar, with Glendive at 10.25 C, and Dinosaur at 8.72 C
14

. 

Although Dinosaur is lower in latitude, it is higher in elevation. Its lower average 

temperature would seem to suggest that it would preserve organics longer than northern 

Montana. However, the winter months in Montana maintain colder temperatures than 

those in Dinosaur. Thus, although it is certain that temperature accelerates the decay of 

biochemicals, it remains speculative but possible that temperature variations in the long 

history since burial of Mesozoic remains have influenced bone collagen preservation bias 

between sites.  
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Novel application of FTIR to collagen decay 

Now that ATR-IR has been applied to ancient bone in largely an exploratory 

investigation, can it be said that the technique detects controversially old bone 

collagenous remnants in traces too tiny for traditional methods such as extraction and 

weighing or extraction and sequencing? One way to address this is to plot CO/P ratios 

from modern to ancient until they no longer drop. In theory, they should generate a curve 

with a decreasing ratio over time until the curve flattens. A horizontal ratio should 

indicate the absence of any trace of CO once the phosphate crystals have reached their 

maximum recrystallisations; i.e., their maximum peak heights. Thus, a preliminary ATR-

IR-based collagen decay curve was constructed as per the following steps. 

First, all the bone samples with either direct or indirect carbon ages were cross-

referenced to those with FTIR results. Table 4.3 lists these data, which were then plotted 

on Fig. 4.11. The commercial laboratories that performed the isotope analyses supplied 

the 1-sigma errors. The radiocarbon years are presented uncalibrated, since the purpose 

was not to pinpoint the age of each sample, but more generally to explore any possible 

relationship between measured CO/P ratios and 
14

C/
12

C ratios. Radiocarbon results for 

Mesozoic and older samples are very rare in the literature, but not totally unprecedented. 

They are typically attributed to contamination, but this attribution often bears heavy 

explanatory burdens as will be discussed in Chapter 7. The error bars for the CO/P ratios 

were obtained by dividing in half the total range of values reported in Table 4.2, which is 

0.0134.  

Fig. 4.11 shows a plot that estimates collagen decay over time. The poor fit of the 

logarithmic curve to the data follow from the widely scattered CO/P ratios. Two potential 

causes of this scattering were discussed above, namely, differences in sample processing 
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and variations in phosphate recrystallisation during diagenesis. It was already well known 

by those familiar with field excavations that collagen preservation, which can be assessed 

 

 

Figure 4.11 | Collagen decay estimated from CO/P ratios of 14 ancient bone samples. Four 

samples had two radiocarbon results, and each of those was plotted separately, making eight data 

points for them, totaling 16 data points overall. Modern bone had the highest CO/P ratio, 

consistent with the idea that CO/P approximates collagen loss over time. However, the poor R
2
 

value of the logarithmic trend line and the wide variation in CO/P indicate that factors additional 

to protein decay significantly affected the results.  
 

in a general sense by the look and feel of bone, since those with poor preservation are 

more friable and generally darker tinted than those with higher quality preservation, that 

collagen quality can vary widely even among samples in similar and nearby settings. 

These new results in Fig 4.11 suggest that phosphate crystal formation may vary even 

more widely than collagen decay, as this process would markedly affect CO/P ratios.  

CO/P ratios that span from medieval to Mesozoic (i.e., excluding the single sample of 

modern bone) show a more linear than exponential trend. One might suggest on this basis 

that bone components can somehow exit the very orderly protein decay trend 

characterised in bone decay experiments
15,16

 and enter a non-decaying, more linear 

preservation mode. However, most of the CO/P variation in the Mesozoic results also 
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appears in just the medieval results. It is possible that the CO/P ratio may have more 

value in estimating bone burial times via collagen decay within forensic time frames of 

within a decade or so, but not as much value in estimating collagen decay in older 

samples like those included in this study.  

Overall, the data shown in Fig. 4.11 confirm that modern bone has a higher CO/P 

ratio than all other IR-analysed and dated ancient bone samples. However, they also 

reveal that CO/P ratios from a long time span do fall within a range, but too wide a range 

to detect a certain trend. Future efforts at using CO/P to estimate collagen decay in 

ancient bone should improve with more consistent and accurate sample processing 

procedures, as discussed above and explored in the next chapter. They may also improve 

with a better understanding of how recrystallisation of phosphate and possibly other 

diagenetic processes affect the CO/P ratio.  

 

Macro for CO/P finder in Excel 

In order to process the FTIR data using standard spreadsheet and graphing software, 

they were saved as .csv files. The proprietary spectral analysis software Omnic was used 

to interface with the Fischer Scientific Nicolet FTIR as described above. It has spectra-

specific features that standard graphing and spreadsheets don’t have, such as an integrated 

library that quickly compares any measured spectrum against a database of spectra for 

standard compounds and a “find peaks” function. In anticipation of having to identify and 

record dozens of carbonyl and phosphate peaks in ancient bone or artificially decayed 

bone sample spectra, a macro program called “CO/P Finder” was written for Microsoft 

Excel.  

The strategy for identifying a peak of interest in a sample began with code that 

specified the typical wavenumber for a functional group. The macro was then directed to 
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search for the highest number five wavenumbers above and below that standard. The 

results were output to specific cells in the spreadsheet. The CO/P ratio was then 

automatically calculated and the result was output to a separate sheet. 

The CO/P ratio results on dinosaur bone material using this macro looked very 

inconsistent. They ranged from -135 to 25, whereas the manually curated ratios shown in 

Table 4.3 ranged from -0.118255 to 0.255673. Therefore each peak of interest was 

collected manually and used to plot Fig. 4.11. Each spectrum was visually plotted and the 

peak of interest was either collected from a visible peak, or in the case of most Mesozoic 

material which showed no visually discernable carbonyl peak, whatever the near-baseline 

intensity was at 1650 cm
-1

 was collected.  

The CO/P Finder code is as follows: 

Sub CO_P_Finder() 

 

Dim wb As Workbook 

Dim ws As Worksheet 

Set wb = ActiveWorkbook 

Set ws = wb.Worksheets("Sheet1") 

Set ws2 = wb.Worksheets("Sheet2") 

Dim i As Integer 

dColumn = 1 'Data Column 

rRow = 1 'Results Row 

nColumn = 4 'Name Column 

On Error Resume Next 

 

 

For i = 0 To 20 'number of times to run loop 

    pRow = "Error" 

 

    pRow = ws.Range(ws.Cells(1, dColumn), ws.Cells(8000, 

dColumn)).Find("1650").Row 'row that is around the phosphate peak 

    cRow = ws.Range(ws.Cells(1, dColumn), ws.Cells(8000, 

dColumn)).Find("1035").Row 'row that is around the Carbonyl peak 

    If pRow = "Error" Then 

        End 

    End If 

    pPeak = Application.WorksheetFunction.Max(ws.Range(ws.Cells(pRow, dColumn + 

1), ws.Cells(pRow + 11, dColumn + 1))) 

    cPeak = Application.WorksheetFunction.Max(ws.Range(ws.Cells(cRow, 2), 

ws.Cells(cRow + 11, 2))) 
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    Debug.Print ("------") 

    Debug.Print (pRow) 

    Debug.Print (cRow) 

    Debug.Print (pPeak) 

    Debug.Print (cPeak) 

     

     

    ws2.Cells(rRow, 1) = ws.Cells(1, nColumn) 

    ws2.Cells(rRow + 2, 1) = cPeak / pPeak 

     

    dColumn = dColumn + 5 

    nColumn = nColumn + 5 

    rRow = rRow + 5 

Next 

 

 

End Sub 

 

Ultimately the use of Omnic’s “find peaks” function proved more efficient and 

consistent results than either manual collection or the above macro. However, it was 

discovered through the experimental process described in the next chapter that the Omnic 

consistently identified a carbonyl peak in artificially decayed bone samples up to 25 

wavenumbers away from the ideal 1650. Therefore if CO/P Finder will find use in future 

studies, it would need adjustments. For example, it would need to search 25 instead of 

just 5 wavenumbers above and below the targeted wavenumber, while also recognizing 

and excluding adjacent peaks from within that range. Refinement of CO/P Finder was not 

pursued because the use of the more widely used algorithm in Omnic would output more 

familiar and comparable results for publication. Therefore, peak results were copied from 

Omnic’s “find peaks” results and pasted into a Wordpad document for the subsequent 

analyses shown in Chapter 5.  
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Raman spectroscopy of ancient bone 

In keeping with the use of the four XA Roman era porcine bone samples from the 

Hallaton shrine as a proxy for error bar determination in FTIR studies of ancient bone, the 

same four bones were selected as initial targets for Raman spectroscopy.  

Fig. 4.12 shows the resulting spectra, collected from 300 to 1800 wavenumbers in 

order to capture the expected peaks from published modern bone scans. In this case XA 

bones were powderised but not sifted. Fig. 4.13 shows a published bone spectrum using 

the same excitation wavelength, in this case mouse cortical bone, after Mandair and 

Morris (2015)
17

.  

 

 

Figure 4.12 | Baselined Raman spectra of four Roman era porcine bones from the same 

context. Spectra acquired with a 785nm incident laser. The four spectra show minimal intensity 

variation, probably caused by differences in grain size between samples. Functional group 

assignments based on comparison with Fig. 4.12. 

 

All four spectra show the same peaks at the same positions, consistent with their 

identical origins as discussed above and in Chapter 2. Peak identifications remain 

tentative, partly because Raman-sensitive diagenetic alterations of collagen functional 

groups remain largely unexplored. Comparisons with Fig. 4.13 give a basis for some 
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identification. Infrared laser sources such as 785 are generally preferred because they do 

not excite autofluorescence in biomolecules, which could easily overwhelm the Raman 

signal
18

.  

 

 

Figure 4.13 | Baseline-corrected Raman spectrum of modern mouse cortical bone acquired 

with a 785-nm laser. Modified from Mandair and Morris (2015)
17

.  
 

Differences between the published Raman spectrum for modern bone shown in Fig. 

4.13 and the Raman spectra presented in this thesis indicate that functional group 

assignments should be considered preliminary. The phosphate positions in modern bone 

at  ~590 and ~950 cm
-1

 seen in Fig. 4.13 hold similar positions in Roman era bone (Fig. 

4.12). Both Figs were scanned at 785nm. However, the prominent 950 cm
-1

 peak in Fig. 

4.13 appears severely reduced in both the ancient and modern bone samples shown in Fig. 

4.14. This could be caused by recrystallalisation during diagenesis, where larger 

microcrystalline sizes alter the electronic configuration of phosphates in such a way as to 

diminish the intensity of their symmetric stretch at 784 cm
-1

.  
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A second comparison references Schof et al., who used the Amide I peak collected at 

785 cm
-1

 to perform 3D Raman imaging of collagen fiber structure in modern human 

femur bone
19

. They used the highest peak between 1600-1700 cm
-1

 to represent Amide I 

and thus collagen. The closest peak among these Hallaton specimens to this range lies at 

1528cm
-1

. This peak, as well as the ~1334 cm
-1

 peak, also occurred in modern, ice age, 

and medieval bone samples using the same experimental setup, as reported by Thomas et 

al. (2017)
4
, shown here in Fig. 4.14. Another difference between the ancient bone Raman 

spectra of Fig. 4.13 and Fig. 4.11 is that in the former case the laser was directed onto the 

surface of bone thin sections, and in the latter case the laser was directed onto 

powderised, but not sifted (see next chapter) bone. This may also explain the scattered 

appearance of the Raman spectra of Hallaton bone samples. Thomas et al. (2017) 

identified the 1528 cm
-1

 peak as an Amide II stretch instead of Amide I as Fig. 4.12 

shows at 1650cm
-1

. Likewise they identified the 1334 cm
-1

 peak as an amide III 

vibrational mode. However, in view of the fact that even the modern bone spectrum 

collected in this study differed significantly from the published modern bone spectrum 

shown in Fig. 4.13, these assignments remain tentative.  

Another obvious difference between the published spectra and the Hallaton spectra is 

the high level of signal noise, seen as scattered intensities along all wavenumbers in Fig. 

4.12. This effect could be the product of bone powder preparation. Powderising bone 

affects sample crystallinity, to which Raman spectroscopy shows sensitivity.   

One potentially key feature of Raman spectroscopy applied to bone is the 

hydroxyproline shoulder identified by Mandair and Morris (2015, Fig. 4.13). 

Hydroxyproline is a collagen-specific modified amino acid, so its detection in any bone 

sample reveals vertebrate-specific collagen, as opposed to contaminant, proteins. It was 
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Figure 4.14 | Raw Raman spectra of modern, Pleistocene (EHRC 90002), and medieval (NP 

77-109-5) bones. Spectra show slight shifting of peaks to higher wavenumbers over time, from 

Thomas et al (2017).  
 

 

initially hoped that Raman spectroscopy could provide an inexpensive and efficient 

means of identifying endogenous collagen even in ancient bone via hydroxyproline 

shoulder detection, but as Fig. 4.14 shows, the experimental setup and/or sample 

preparation did not reveal a discernable peak at that position (~875 cm
-1

, using a 785 nm 

source) in modern bone, let alone ancient bone samples.  

Further research will be necessary to first re-capture the hydroxyproline peak as per 

Mandair and Morris (2015). Then, adjustments to the bone preparation and instrumental 

parameters would be necessary to more firmly identify collagen-indicators such as Amide 

I, II, and III peaks. Once these key peaks are identified, then additional research with 

Raman spectroscopy, perhaps on time-stamped artificially decayed bone collagen, could 

prove helpful in characterising the effect of age on protein-specific peak heights, 

positions, and shapes. For example, Fig. 4.14 shows a slight shift in wavenumber with 
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sample age, but three samples are too few to establish this as a trend. Thus far, instead of 

finding Raman spectroscopy a quick and accurate collagen detection technique, these 

results present an unforeseen realm of investigation into Raman spectroscopy on ancient 

bone.  

 

The potential for spectral studies of ancient bone collagen 

The results in Chapter 4 and 5 expand collagen decay characterization by FTIR and 

Raman spectroscopy enough to suggest their potential for use in efficient and user-

friendly protocols that pre-screen samples for the presence of ancient or fossil bone 

proteins. For example, the TruScan RM Handheld Raman Analyzer by Thermo Scientific 

weighs only two pounds and could accompany future archaeologists in the field if a 

sufficient protocol were to be developed for it or a similar instrument.  

However, the poor fit of CO/P ratios to a decay curve as shown in Fig. 4.10 

suggested that some factor or factors in the analysis, approach, technique, and/or 

underground history (taphonomy) of the samples made the CO/P ratios captured here a 

poor proxy for collagen decay in ancient bone, as mentioned above. Ancient proteins 

expert Matthew Collins mentioned (personal communication, May 24, 2018) an 

unpublished paper by Kontopoulos et al. that characterized systematic FTIR spectral 

differences in both peak position and intensity with powdered bone grain size
9
. Therefore, 

an experiment was conducted to test the possibility that certain recommended procedures 

from that unpublished paper, especially including tighter control on grain size, could 

improve the precision of FTIR enough for it to find use in ancient as opposed to just 

forensic bone samples. This experiment is the subject of the next chapter.   
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Introduction 

Use of SHG and FTIR to explore actually decayed (ancient) bone collagen in situ and 

to estimate bone collagen decay revealed two reasons why these same techniques should 

be applied to artificially decayed bone. Firstly, typical means of assessing collagen 

integrity involve collagen extraction prior to measuring molecular integrity, for example 

by sequencing, electrophoresis, or weighing. This makes results dependent on the 

variabilities of extraction yields and produces wide-ranging bone collagen decay 

estimates. In contrast, more precise FTIR and SHG measurements can assess bone 

collagen directly within bone, offering potential to increase measurement precision and a 

narrower decay range.  

Lastly, FTIR or SHG-based assessments of ancient bone collagen integrity remained 

speculative without comparison to results from the same two techniques applied to 

experimentally decayed bone. Therefore an artificial bone decay experiment was 

conducted using similar procedures to published artificial collagen decay experiments, 

but this time using ATR-IR and SHG microscopy to evaluate the integrity of decaying 

collagen throughout the experiment.  

In addition to evaluating the applicability of ATR-IR to decaying bone collagen, this 

experiment explores the question of what causes the poor fit shown in Fig. 4.10. Is FTIR 

sensitive enough to detect trace amounts of protein remnants in archaeological bone? Do 

the wide ranges in CO/P ratios for ancient bones reflect actual bone components, bone 

preparation procedures or something else? To address these questions, modern porcine 

bone was processed and heated at three different temperatures for one month each in 

order to generate an Arrhenius plot as per Collins et al
1
. CO/P ratios from FTIR spectra 

were used to quantify bone collagen decay as per Thompson et al
2
, and SHG images were 

captured in parallel to give a qualitative perspective on bone collagen decay. The 
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experiment also gave opportunity to evaluate adjustments to bone preparation protocols 

as discussed below.  

 

Methods 

An artificial bone decay protocol was developed based on the methods used by 

Collins et al (1995)
3
. Those methods, modified in a 2000 paper, are reproduced here for 

context, followed by a description of modifications made to them: 

Bone powder was saturated to 95% relative humidity and sealed in Pyrex glass 

tubes, as described in Collins et al, 1998
4
. The tubes were heated in modified 

DNA hybridization ovens (±0.1 °C). Oven temperatures were maintained at 75 

°C, 85 °C, and 95 °C. Oven modifications involved integration of a new heating 

element with a higher temperature capability. The tubes were removed at 

selected time intervals and stored frozen at –75 °C until analysis. For analysis, 

samples were demineralized in 10% wt/vol EDTA with protease inhibitors 4 

days at 4 °C
4
. A total of four EDTA extractions were performed on each sample, 

and the four supernatants were pooled for immunoassay. The immunoassay 

(ELISA) measured collagen extracts as a percent of the ELISA signal of original 

(time 0), un-decayed bone
1
.  

The following protocol adjustments were made to the above. First, Modern porcine 

cortical metacarpal and metatarsal bone was obtained from a local market. Because 

protein decay is sensitive to temperature, it was recognized that air temperature variances 

within a dry oven could introduce significant scatter into resulting collagen decay plots. 

Also, initial attempts at using incubator ovens resulted in some of the high temperature 

(90 °C) vials exploding. Therefore, three separate water baths were used to maintain a 

more uniform temperature across all samples and to provide counter-pressure on the vials. 
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A high temperature of 90 °C instead of 95 °C was used to reduce data scatter, since lower 

temperature plots showed the highest R
2
 values in published studies. Two replications 

each of two bone preparations were used for each of three temperatures. Temperatures of 

90 °C, 86 °C, and 82 °C were selected to minimise the total length of the experiment, 

since it would take more than a month to establish a trend line using temperatures in the 

70’s °C.  

Approximately 2 g of bone powder was separately placed into 25 ml ampules 

(Wheaton, Millville, NJ).  This bone powder was saturated with deionized water. Porcine 

bone powder preparation presented unique challenges when what appeared to be 

endogenous bone lipids caused the grains to flocculate, making a paste that would not 

pass through the size-exclusion sifting screens (described below.) Therefore a drying step 

was added to the bone preparation procedure. Accordingly, the ampules were placed into 

an 80°C water bath and held for 30 minutes.  Excess water was then decanted from the 

bone powder.  This provided a moist but not soaked bone sample.   

Ampules containing porcine bone were then heat-sealed and placed into water baths 

maintained at 82° C, 86° C, and °90 C.  Two ampules were removed from each water 

bath according to a preset sampling schedule.  Ampules were subsequently opened, bone 

content drained onto Falcon cell strainer (40 μm) filters, and bone shards removed from 

the powdered bone. The resulting 90 dried bone powder and shard samples were stored at 

3 °C for further analysis. 

Because FTIR assesses bone collagen decay essentially through quantifying a 

reduction in carbonyl peak heights, the freezing and demineralisation procedures of 

Collins et al. (2000) necessary to immunoassays were omitted here. Also, two key 

recommended procedures were adopted from unpublished work by Kontopoulos et al
5
, 

who demonstrated systematic IR peak shifts with grain sizes. First, each replicated sample 
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was scanned in triplicate to ensure uniform spectral characteristics. This totaled 135 

spectra for all three temperatures. Second, bone powder grain size was restricted to 

between 20 and 60 μm by sifting between stacked sieves (Fisherbrand 8 in. dia. x 2 in. 

depth).  

ATR-IR spectra were collected according to the methods described in Chapter 4. 

Briefly, bone powder was crimped beneath the anvil on the diamond window of the 

Thermo Nicolet ATR module. Each spectrum averaged 16 scans. Spectral collection 

ranged between 2,000 and 600 wavenumbers. Default settings for optical velocity 

(1.8988) and Aperture (138) were used. Spectra were saved separately as both a .SPA and 

.CSV file. Each spectrum was plotted using Omnic, where the “find peaks” function was 

used. The tolerance slider was adjusted just until the software displayed the carbonyl 

(CO) peak at ~1650 cm
-1

. This also captured the phosphate (P) peak of interest as well as 

other neighboring peak heights. CO and P peak intensities for all six reads (two 

replications of three reads each) were averaged for every temperature and time. These 

averages were used to calculate linear slopes for each temperature. The slope of the line 

of best fit calculated for the CO/P ratio versus time in days was used for the rate constant, 

k, for each of three temperatures, according to k = -slope. These slopes were then used to 

construct an Arrhenius plot, from which the values used in the Arrhenius equation can be 

determined. The equation estimates molecular decay at any temperature, thus:  

𝑘 = 𝐴𝑒−𝐸𝑎/(𝑅𝑇) 

where k is the rate constant specific to collagen, A is a constant that estimates a molecular 

collision rate, e is the base of natural logarithms, Ea is the energy of activation, R is the 

gas constant (8.3144598 kg m
2
s

-2
K

-1
mol

-1
), and T is temperature in °K.  

SHG imaging was used as an independent and qualitative confirmation of the 

quantitative FTIR data. SHG imaging was performed as per Thomas et al, 2017. Bone 



162 
 

shards were mounted on glass slides and imaged under a Zeiss Plan-Apochromat 10×, NA 

=0.45 objective lens using a Zeiss Examiner Z1 two-photon excitation laser scanning 

confocal microscope (Carl Zeiss, Jena, Germany) coupled to a Coherent Chameleon 

titanium:sapphire laser (Coherent, Glasgow, UK). The laser was set to 920 nm for 

excitation. The SHG emission signal was collected at 458 nm (half the excitation 

wavelength).  

A parallel autofluorescent signal was also collected at 760 nm. Cellular components 

including lipopigments and vitamin derivatives (Zipfel et al., 2003) as well as aromatic 

amino acids (Monici, 2005) autofluoresce and provide a context for comparison with the 

collagen histology. A dual channel Zeiss LSM BiG detector captured both the SHG and 

autofluorescent channels simultaneously. Focal planes and bone regions were selected to 

include sufficient collagen to visualise within the viewing frame. Frame sizes of 1932 × 

1932 pixels were rastered at 5 s speed, taking the average of 4 reads per line. 

Open source ImageJ software package Fiji was used to overlay parallel channels and 

adjust channel brightness
6
. Unless otherwise noted, intensity thresholds were generally set 

to 40–255 to visualize the strong and broad collagen signal seen in fresh bone, and 20 to 

255 to visualize the faint and rare signal seen in artificially decayed bone.  

 

  



163 
 

Results 

 

Figure 5.1 | Sample FTIR spectra and corresponding SHG images for bone artificially 

decayed at 82 ºC. CO/P refers to the ratio of peak heights indicated in the spectra, where CO = 

carbonyl and P = phosphate. Each average represents six scans—three each for two experimental 

replications. The CO/P dropped steadily over time, consistent with shrinkage of the CO peak 
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representing collagen decay. The spotty 1138 cm
-1

 spike on some spectra did not appear to affect 

the peaks of interest or the overall results. Figure shows representative data only. Scale bar for 

SHG images is 200 μm. Intensity thresholds were set as follows: Day 0 red = 0-75, green 0-145. 

Day 4 red = 0-75, green 0-145. Day 6 red = 0-75, green = 0-145. Day 10 red = 0-75, green 5-200. 

Day 14 red = 0-145, green 0-145. Day 18 red = 0-75, green 0-145.  

 

Figure 5.1 shows six example spectra beside their corresponding SHG images taken 

from the 82 °C experiment. The decrease in red collagen signal seen in the SHG images 

qualitatively corroborates the steady decrease in quantitative CO/P ratios. SHG images in 

Fig 5.1 represent manually splintered instead of precision cut bone surfaces. Although 

precision cut surfaces are preferred as they supply more consistent imaging data, the 

required time for sample preparation may not appeal to researchers interested more in 

speed than quality of image acquisition. Overall, the qualitative perspective from 

manually prepared bone shards may have been just as effective as precision cut bone 

samples in illustrating decay, seen here as a diminishing red signal. The standardisation of 

bone particle size, in conjunction with other experimental constants such as use of the 

same bone as source material and each sample’s exposure to virtually the same hydration, 

produced uniform spectral results shown in Fig. 5.1. 

Of particular note from the 82 °C experiment, SHG of artificially decayed bone as 

shown in Fig. 5.1 very closely resembled decay characteristics of ancient bone images 

shown in Chapter 3. For example, the red collagen signal in Fig. 5.1 began to fade in 

intensity and coverage, eventually diminishing to tiny red dots. Similarly, SHG images of 

Medieval (e.g. Fig. 3.5) and Roman Era bones had faded in intensity and coverage as 

compared to modern bone, and many find their artificial equivalents in the range of 

approximately days 4-10. Further, the oldest bone samples imaged in Chapter 3 from ice 

age and Cretaceous sources showed small pockets with red dots, interpreted as tiny 

collagen fibre holdouts. These resembled the small red signal seen in some of the most 

decayed bones from the experiment, for example Day 18 from 82 °C in Fig. 5.1.   
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SGH images from the 90 °C spectral data lost visible collagen within 10 days. After 

that point, red collagenous remnants were not generally observed, and CO/P ratios began 

to fluctuate somewhat randomly instead of in a steady decline. Lower temperatures 

offered higher resolution perspective of collagen decay. Therefore the 82 °C data were 

used to illustrate gradual degradation of collagen from powderised bone as shown in Fig. 

5.1.  

 

Day 

CO/P Ave, 

90 ºC  

CO/P Ave, 

86 ºC 

CO/P Ave, 

82 ºC 

0 0.3102 0.3102 0.3102 

2 0.297296 

  4 0.150254 0.164992 0.151097 

6 0.105685 0.142077 0.157058 

8 0.116257 0.121179 0.159201 

10 0.094972 0.119364 0.149412 

12 0.110388 0.126632 0.14436 

14 

 

0.100859 0.132884 

16 

 

0.092486 0.122954 

18 

 

0.121298 0.116875 

20 

 

0.112043 0.08874 

22 

  

0.098664 

 

Table 5.1 | CO/P averages of three scans of two replications per day. Spectra were collected 

for most of the missing cells, but calculation of their CO/P ratios was discontinued after the time 

points when results from each temperature began to fluctuate instead of steadily decline. Some 

day two data were unavailable due to difficulties in bone preparation. The data shown here were 

used to construct the first Arrhenius plot for protein decay using FTIR, as shown below.  

 

Whereas the first 100 or so scans resulted in almost exact duplications of their 

respective experimental replications and spectral triplications, some of the last few dozen 

scans began to veer from the baseline at the high and low ends of the 400 to 2000 

wavenumber scan spectrum. The CO/P ratios from these “floating” spectra also veered 

from the systematic decay trend that all the preceding data had revealed. The floating 

spectra were treated as outliers. Such results proved the usefulness of the painstaking 
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process of collecting scans in triplicate, and of replicating the experiment. The Day two 

spectra were not yet available at the time of writing due to difficulties dessicating the 

powder enough to fit through the 60 µm mesh sieve without heating it (which would 

accelerate collagen decay and thus skew the results). The CO/P ratios of all non-outlier 

plots were averaged, and Table 5.1 shows these averages. The natural log was taken for 

each average as per Collins et al
4
, then plotted versus time in Fig. 5.2. Slopes from the 

three plots were consistent with expected bone collagen decay rate differences between 

evenly spaced temperatures.  

 

Figure 5.2 | Log plots of porcine bone collagen decay at three temperatures.  

 

The linear regression function in Excel was used to calculate a slope for each of three 

experimental temperature data sets. Fig. 5.2 displays each slope in standard y = mx + b 

format. As in published versions of this experiment, the highest temperature experiment 

(90 °C, blue diamonds in Fig. 5.2) showed the widest scatter. The slopes from Fig. 5.2 

were uniform and considered suitable to construct an Arrhenius plot, shown in Fig. 5.3.  
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Figure 5.3 | Arrhenius plot of artificial collagen decay in porcine bone. The decay rate at 86 

°C (the middle point) almost exactly equaled the average decay rate for all three temperatures, 

creating a nearly perfect fit of the data to a linear slope. Data represent CO/P ratios of FTIR 

spectral peaks for three temperatures, shown in Fig. 5.2.  

 

The resulting Arrhenius plot showed an almost perfect R
2
 of 0.9999. This highly 

correlated result was attributed in part to the high precision of the FTIR process used, 

which was independent of variations in extraction yields as it assessed the collagen 

carbonyl bond vibrational mode in situ. Fig. 5.3 represents the first use of FTIR to 

quantitatively assess bone collagen decay. The slope, again calculated using the linear 

regression function in Excel, was used to solve for Ea and A as per Collins et al
4
. Thus, 

𝐸𝑎 = |𝑅𝑏| 

where b is the slope of ln(k), 1/T: Ea = 8.31445898(-5593.68681) = 46,508.48 kJ mol
-1

. 

𝐴 =  𝐸𝑥𝑝𝑎 

where a is the y-intercept of the slope of ln(k), 1/T: A = Exp
36.46

 = 6.833 x 10
15

. 

The resulting Ea for porcine bone of 117 kJ mol
-1

 is 36 % different than, but in the 

same order of magnitude as, the published 173 kJ mol
-1

 for bovine bone
7
. Further 

investigation will be required to determine the cause of this difference. Possible 

contributing factors include differences between porcine and bovine bone chemistry and 
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variations in the reactivity of bone components during artificial diagenesis, the novel use 

of FTIR to assess bone collagen decay, and temperature spacing between experimental 

setups.  

 

Conclusions 

The experiment-based solutions for Ea and A substitute into the Arrhenius equation 

(p. 159) to calculate decay rates for collagen decay at any given temperature. Table 5.2 

gives three example temperatures. 10 ºC approximates the average annual temperature of 

England, 7.5 ºC of Montana, and ~25 ºC of tropical regions. These results affirm the high 

sensitivity of collagen decay to temperature as well as the empirical basis for expectations 

of bone collagen disappearance from sedimentary contexts below the upper Pleistocene.  

 

Various 
temps (ºC) 

Various 
temps (ºK) 

Rate (k) at temp, 
using Arrhenius  

Half-life (days) of 
rate k, using (ln2/k) 

Half-life 
(~years) 

10 283.15 1.76084E-06 393,645.36 1078 

25.85 299 2.45556E-05 28,227.72 77 

7.5 280.65 1.13086E-06 612,938.51 1678 

 
Table 5.2 | Porcine bone collagen decay rates at three temperatures.  

 

 

The discovery of just how fatty the porcine bone was, the fact that the ancient bone 

samples from England come from both porcine and bovine, and the difference between 

published and resulting Ea values suggest that this experiment needs to be replicated on 

bovine bone. Initial work on bovine bone has found that it is much drier (i.e., has an 

apparently lower lipid content), and thus promises to be easier to work with. Bovine 

results will enable direct comparison between decay rates of collagen from two differing 

mammalian taxa, as measured by FTIR-based CO/P ratios.  

FTIR measured bone collagen decay with high precision, and SHG illustrated the 

same bone collagen deca y with high accuracy. The high R
2
 values of the line of best fit 
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shown in Fig. 5.3 commends FTIR as a reliable new technique for direct assessment of 

bone collagen integrity in artificial collagen decay experiments. Its usefulness was 

predicated on the standardisation of powder grain size to between 20 and 60 μm, which 

effectively neutralised crystallisation effects on FTIR spectra. Future use of ATR-IR on 

ancient bone will benefit from this standardisation of protocol.  
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Justification of Stable Isotope Analysis 

The first chapter of this thesis used a literature search to reveal the core question. 

Namely, fossil organics that include original biochemistry and even entire, flexible tissue-

like structures most famously in Cretaceous fossils encounter limited reception in certain 

circles. This research project was therefore targeted at applying novel technologies to 

ancient bones with the premise that additional data would help resolve this controversy. 

Chapter 2 described the first step to that end, which was to adequately describe the 

provenance of, and properly catalogue, each specimen. Chapter 3 showed the positive 

results of a novel application of SHG to ancient bone. It revealed faint traces of collagen 

in Mesozoic samples. Chapter 4 investigated the same set of bones using infrared 

spectroscopy, and the artificial bone collagen decay experiment described in Chapter 5 

erected a context to help interpret those results. It also introduced FTIR as a valid tool to 

quantify collagen loss over simulated time. The preceding efforts have thus far focused on 

the organic fraction of ancient bone, which consists primarily of Type 1 collagen. 

However, investigation of the the mineral fraction offers an indirect tactic to evaluate the 

fossil biochemical controversy. This chapter therefore describes stable isotope analyses of 

the mineral (bioapatite) fraction of Cretaceous samples. Also, the stable isotope results 

described here parallel Mass Spectrometry Group efforts to develop a field-deployable 

quadrupole mass spectrometer (QMS) with capability to detect key stable isotopes 

including 
13

C and the far more abundant 
12

C.  

 

Linking Molecular Preservation with Stable Isotopes 

Molecular preservation such as decayed bone collagen, peptides, and organic 

residues in fossils has been reported for decades, but the numbers of such publications, 

and especially the specificity of molecular identification have increased significantly in 
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recent years (see Chapter 1 and review by Schweitzer and Marshall)
1
. Several of the more 

impactful molecular preservation reports, especially including those sourced from bone 

collagen, derive from Montana’s Hell Creek Formation (HCF) and a handful of other 

dinosaur fossil-rich beds in western North America. These sources of molecular 

preservation in, for example, Tyrannosaurus rex
2
  and Triceratops horridus

3
 offer 

intriguing new windows into the paleobiology, paleoecology, and paleoclimatology of the 

Late Cretaceous in North America
4
. Some HCF collagen samples have even furnished 

high enough molecular integrity for pioneering protein sequence comparisons with extant 

archosaurs
2,5

. Literature summarized in the next section of this chapter reveal a growing 

list of geologic settings that contain molecular preservation in fossils. These include from 

North America the HCF equivalent Lance Fm. Underlying these, the Judith River Fm. 

and Dinosaur Park Fm., the Niobrara Chalk Fm. of Kansas
6
, and the Green River Fm

7
 all 

supply Cretaceous material with published organics. Elsewhere, the Ciply Phosphatic 

Chalk of Belgium
8
, the Lower Lufeng Fm. of China

9
, and the Lower Gogolin Formation 

in Poland
10

, among others, retain molecular preservation. These reports of molecular and, 

more rarely, primary tissue preservation do not include stable isotope data. 

However, stable isotope ratios including 
13

C/
12

C ratio measurements (δ
13

C) from 

bioapatites have been used to convey meaningful paleodietary data from Cretaceous 

settings
11

. Results are reported in δ
13

C, where δ = (Rsample/Rstandard−1)·1000‰, R = 

13
C/

12
C, and isotope values for the Vienna Pee Dee Belemnite (VPDB) are used as the 

standard for carbon.  Stable isotope studies only supply meaningful data if they reflect 

primary isotopes. Establishing the presence of primary carbon is a necessary step for 

δ
13

C-based reconstructions to either reflect ancient diets or ecosystems or confirm or 

refute the hypothesis of primary Cretaceous organics.  If dinosaur bone bioapatite and 

bone protein remnants preserve primary carbon isotope ratios, then both fractions should 
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contain largely original carbon. Arguments have been made in favor of primary carbon 

isotope ratios in fossil material via stable isotope tests such as comparing within-bone 

offsets and paleontological versus biological differences
12

. 

Secondary isotope alteration of bone bioapatite can occur by metamorphism or 

groundwater percolation that would facilitate dissolved carbonate interactions. Within-

bone indicators of secondary isotopes include: (1) isotope exchange mismatches between 

stable isotope ratio patterns found in fossil versus modern bone, (2) randomized between-

species or within-bone fraction offsets, and (3) homogeneity between fossil bones of 

different taxa within a site or microsite. Stated positively, primary bioapatite and 

proteinaceous carbon sources should exhibit (1) biological isotopic heterogeneities, (2) 

bone fraction and taxon-specific isotopic offsets, and (3) bone fractionation patterns 

between taxa or microsites that resemble those from comparable modern bone samples 

and ecosystems. 

Finally, the co-occurrence in fossils of primary protein remnants and primary carbon 

isotopes may be related, but such co-occurrence must first be established prior to 

investigating possible causes. This chapter takes two steps toward investigating the co-

occurrence of primary molecules and isotopes. First, it collates disparate literature from 

the two separate disciplines. Second, it includes two assessments for and against the 

presence of primary carbon isotopes in Hell Creek and Lance Formation bone fossils. 

These include comparisons between new stable carbon isotope ratios from dinosaur bone 

bioapatite to isotopes from 73 published dinosaur enamel and dentine results, and 

comparison between three within-bone fractions. The establishment of primary isotopes 

within specimens from the same settings as those with reported primary organics would 

confirm the primary proteins in fossils.  
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Background: Stable Carbon Isotope Ratios 

Marine environments are enriched in 
13

C compared to terrestrial environments
13

. On 

land, plants that use the more common C3 photosynthetic pathway are more depleted in 

13
C than C4 plants. Trophic levels, taxon or age-specific bodily processes such as 

hibernation or weaning
14

, or a particular mix of dietary components such as marine and 

terrestrial sources
15

 can generate δ
13

C offsets in differing body tissue fractions like the 

biominerals versus organics in teeth and bones. Measured biological differences across 

feeding modes and body tissues reflect known isotopic offsets to which fossil data can be 

compared. Conclusions about paleodiets may in turn inform plausible models of ancient 

ecosystems.  

An array of papers has explored links between stable carbon isotope ratios and biome 

variances within extant
16

 and extinct ecosystems
17

. These studies ultimately convey 

meaningful data with certainty only if original ratios are known or accurately inferred. 

Unfortunately, no purely objective test exists to verify the primary origin of isotope 

ratios. Differences in geologic settings such as matrix permeability and lithology, 

diagenetic processes such as hydrothermal circulation and crystallite reorganization, and 

metamorphic alteration can facilitate or inhibit isotopic exchange to various degrees in 

different tissue components. Strategies have therefore been developed to help assess 

whether or not, or to what degree, stable isotopes from fossils reflect primary or 

secondary sourcing. After applying appropriate sample cleaning and treatment protocols, 

these strategies include comparing isotope ratios from different taxa in one location, 

comparing different isolates from one body part, and comparing fossil isotope 

fractionations with biological fractionations, preferably with known parallels in extant 

biomes
11

. 
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Experiments show that δ
13

C values in bone or tooth apatite are higher (enriched) 

compared to collagen sampled from the same organism. Krueger and Sullivan
18

 modeled 

this offset as a product of dietary carbohydrate carbons entering bone apatite and dietary 

proteins entering bone collagen. If undisturbed, 
13

C content in organic versus inorganic 

bone fractions preserve food source signals plus isotope partitioning effects. Such 

differences between δ
13

C values in apatite and collagen may be observed even after 

presumed diagenetic processes have occurred. As an example, Lee-Thorp et al
15

 found 

that bone collagen in herbivore remains from southern Africa and Malawi represent a 

fractionation of ~ +5‰, and herbivore bone apatite ~+12‰, relative to the vegetation 

source.  

Recently, stable carbon and oxygen isotopes in apatite of dinosaur and other fossil 

reptile femurs and teeth, plus several shells and bones, supplied sufficient data to begin 

reconstruction of East Asian dinosaur environments including regional paleoclimates
19

. 

Tütken’s 
13

C analysis of sauropod biominerals and extant plus extinct plant matter 

concluded that sauropods from the Morrison Formation and the Tendaguru Beds of 

Tanzania ate terrestrial C3 plants
12

 . Stable isotope analysis of organic remains in a 10 cm 

long sauropod coprolite revealed a mean δ
13

C value of -24.1‰, also consistent with 

preservation of C3 plant matter
20

. Closer to the context of this present study, Fricke and 

Pearson
21

 reconstructed dinosaur and garfish niche partitioning in the HCF using δ
13

C and 

δ
18

O ratios, standardized to VPDB and Vienna Standard Mean Ocean Water (VSMOW), 

respectively. Similarly, primary 
13

C signatures have been interpreted from Dinosaur Park 

Formation, as well as from the dinosaur-rich, Two Medicine and Judith River Formations 

in Western North America
11

.  

If carbon isotopes from Hell Creek dinosaur bones show patterns that indicate 

extensive diagenetic alteration, for example virtually equal apatite-collagen offsets or 
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non-biological offsets, then further work would be suggested to evaluate the extent of 

isotope exchange. On the other hand, finding similar patterns to those of other workers 

suggests isotopic preservation. When joined to sites showing molecular preservation, 

investigation of causes for such co-occurrence could then begin. From a wider 

perspective, if the literature reveals primary isotopes in fossils lacking molecular 

preservation, or vice versa, then causal explanations should be sought to match those 

findings. However, the recognition of primary isotopes alongside molecular preservation 

would suggest causal explanations that could help account for both fossil features. Thus, 

Cretaceous specimens from geologic formations containing fossils with already published 

descriptions of original biochemistry were obtained and evaluated for δ
13

C ratios. 

 

Geologic Setting and Materials 

The HCF outcrops in South Dakota and Wyoming show siliciclastic lithology 

containing laminar and cross-bedded sandstones, mudstones, and ironstones, as well as 

coal seams and coal lenses of various purities. Cretaceous fauna are preserved in its 

impure sandstones. These characteristic lithologies and paleofaunas also outcrop in the 

Williston Basin and Bighorn Basin in Wyoming to comprise the Lance Formation, 

illustrated in Fig. 6.1. In many areas, for example the HCF type locality in Flag Butte, 

north of Jordan, Montana, these coeval Formations contain a K-Pg boundary signature of 

two characteristic lignite beds near an iridium anomaly
4
. The GDFM fossils (see Chapter 

2) from the HCF in this study included two Triceratops horridus femora and one 

hadrosaur femur collected from a private ranch near Glendive, Montana, 7.6 m below the 

narrow K-Pg coal seam marking the upper boundary of the HCF. A small portion of the 

triceratops brow horn described in Anderson and Armitage
3
 as HTCH06 was tested 

alongside a separately catalogued fragment of the same horn core, GDFM 12001. The 
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sandstone layer from which these samples were extracted, approximately 3 m below the 

surface, was poorly cemented.  

 

 

 

 

 

 

Figure 6.1 | Correlation chart of 

Formations and relative fossil locations. 

Asterisks mark positions of fossils sampled 

in this study. Dots mark positions of fossils 

sampled by Fricke and Pearson
21

 and Fricke 

et al.
11

. Formations and Stages adapted from 

Rogers et al.
22

 and Finn
23

.  

 

 

 

 

The HRS fossils from the Lance Fm. used in this study (see Chapter 2) came from a 

private ranch near Roxson, Wyoming. An unidentified dinosaur limb bone fragment from 

Rose quarry, and a Lambaeosaurus long bone fragment from the Southwest quarry are 

two of approximately twenty thousand dinosaur and other bones and fragments from the 

poorly cemented and poorly sorted Maastrichtian Lance sandstone lenses historically 

interpreted as fluvial deposits
24

. Here we present additional carbon isotope signatures 

from Hell Creek fossils and new results from two Lance Formation dinosaur bone fossils, 

and compare these signatures to published results on fossils from HCF, Judith River, and 

Dinosaur Park Formations. We hypothesize that strata with primary isotope indications 

within their fossils would be more likely than other strata to also contain fossils with 

original organics. 
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Fossil sites were selected based on a high likelihood of verifying both primary, 

largely unaltered OM and primary carbon isotopes as described in the literature. 

Lithology and paleofauna identify formation name equivalences shown in Figure 1. The 

Dinosaur Park Formation from eastern Montana and southeastern Alberta, Canada, would 

stratigraphically underlie the Hell Creek and Lance Formations if present in one 

geographic location. All three formations, plus Judith River, have already shown 

remarkable preservation of primary carbon sources. Figure 1 also illustrates geological 

proximities of primary bone proteins extracted from nearby formations in Western North 

America. Fossil site selection included consideration of similarities in lithology (for 

example deep sandstones)
25

 with the assumption that lithology contributed to molecular 

and isotopic preservation.  

 

Literature Search for Molecular and Isotopic Co-occurrence 

Literature describing primary stable carbon isotopes was collected and compared to 

reports of primary OM from the same geologic settings. Table 6.1 shows nine co-

occurrences of primary carbon and OM. Surprisingly, they represent Cenozoic, Mesozoic, 

Paleozoic, and Proterozoic strata. This observation suggests that taphonomic processes 

that may have contributed to preservation of both isotopes and biomolecules, for example 

rapid burial and lithification, have occurred throughout depositional history.  

More co-occurrences will probably emerge from additional literature searches and 

data collections. For example, Table 6.1 shows that the results reported here from Lance 

Fm. dinosaur bone bioapatite δ
13

C, if considered primary, would add a tenth co-

occurrence. 
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 Geologic 
formation  

 

Primary 13C signature (Reference) Primary organic material (Reference) 

1 Green River Stromatolite laminae26  Lizard keratin7 

2 Messel Intraleaf structures27  Insect cuticle28  

3 Hell Creek Dinosaur tooth enamel, gar scale 
enamel21   

Probable dinosaur bone apatite29  

T. rex bone collagen2   
Probable dinosaur collagen29 

4 Lance Probable dinosaur bone apatite29 Dinosaur bone collagen30-33  

5 Dinosaur Park Dinosaur tooth enamel11  Theropod bone collagen32,34  

6 Judith River Dinosaur tooth enamel11 Dinosaur bone amino acids35  
Brachylophosaur collagen, elastin, 

etc.36  

7 Jehol Biota Dinosaur, crocodile, and turtle 
tooth and bone apatites19  

Psittacosaurus sp. probable 
integument proteins37  

8 Morrison Lacustrine carbonates38  Seismosaur protein39  

9 Gunflint Chert Microfossil components40  Cyanobacteria amide functional 
groups41   

10 Emu Bay Shale Cyanobacteria42  Gloeocapsomorpha prisca 
(cyanobacterium) N-alkanes42  

 

Table 6.1 | Geologic Formations contain fossils with both primary stable carbon isotopes 

and endogenous biomolecular remnants. Line 3 shows that new results in this chapter verify 

published data, and line 4 shows where results described in this chapter may extend co-occurrence 

into Lance deposits.  

 

Sample Treatments 

Seven Upper Cretaceous dinosaur bones were collected and portioned into 15 

samples. Taxa included eight samples from Triceratops horridus, one unknown taxon, 

and two hadrosaurids including a Lambeosaurus lambei. From these, fifteen 
13

C/
12

C ratio 

measurements are reported in δ
13

C. Table 6.2 shows the 
13

C results from three different 

chemical preparation procedures were performed to isolate three different bone fractions 

from various specimens.  One preparation isolated bone protein remnants (mostly 

collagen as discussed in Chapter 1 and below), a second isolated bioapatite, and a third 

included a mixture of bone biomineral plus organics. Stable carbon isotopes from each 
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fraction were compared to end members from corresponding biological bone fractions, 

expectations from diagenesis, and previously published data.  

Commercial laboratories were used in order to avoid bias, ensure industry standard 

results, and obtain the highest possible accuracy to construct a baseline for future stable 

isotope studies toward testing a novel portable mass spectrometer currently under 

development (See poster presentations in Appendixes 6.1 and 6.2). Specifically, 

archaeological practice has over several decades firmly established decontamination 

procedures for bone isotope analyses
33

. In conjunction with the high resolution of AMS 

technology, well-tested decontamination protocols present perhaps the most accurate 

means of extracting primary isotope information from fossil bone. In particular, acid plus 

alkaline washes described below in the Arslanov and Svezhentsev
43

 protocol have 

repeatedly demonstrated their effectiveness in removing organics, for example humic 

substances, that may have adsorbed onto bone crystallites or other microsurfaces, and 

thus in isolating primary material.  

Accordingly, protein residue, bulk bone, and biomineral extraction protocols as 

standardised for archaeological use were performed by Geochron Laboratories and the 

University of Georgia’s Center for Applied Isotope Studies (CAIS). Geochron 

Laboratories subcontracted the measurement of graphitized carbon isotope ratios, using 

accelerator mass spectrometry, and CAIS collected measurements using their compact 

National Electrostatics Corporation Model 1.5SDH-1 Pelletron 500kV accelerator mass 

spectrometer. The expense of these procedures limited sample numbers and results. Table 

6.2 lists the six specimens investigated and their extracted fractions.  
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(Numbered bone) 

Taxon, Description 

Apatite 

δ
13

C  

Bulk 

δ
13

C 

OM 

δ
13

C 

Accession 

Number Lab Number 

1) Triceratops  femur  

  

-23.8  GDFM 08.027 UGAMS-03228b 

2) Hadrosaurid femur  

  

-22.7  GDFM 04.001 UGAMS-01937 

3) Triceratops 1 femur  

  

-20.1  GDFM 03.001 GX-32372 

2) Hadrosaurid femur  

 

-18.4 

 

GDFM 04.001 GX-32678 

4) Triceratops horn  

 

-17.1 

 

GDFM 12.001 UGAMS-11752 

3) Triceratops 1 femur  

 

-16.6 

 

GDFM 03.001 GX-32647 

2) Hadrosaurid femur  

 

-16 

 

GDFM 04.001 GX-32739 

2) Hadrosaurid femur   

 

-15.7 

 

GDFM 04.001 UGAMS-01936 

3) Triceratops 1 femur  -7.24 

  

GDFM 03.001 UGAMS-17386 

2) Hadrosaurid femur -6.4 

  

GDFM 04.001 UGAMS-01935 

4) Triceratops horn -5.51 

  

HCTH 06 UGAMS-17387 

1) Triceratops femur -4.7 

  

GDFM 08.027 UGAMS-03228a 

4) Triceratops horn  -4.3 

  

GDFM 12.001 UGAMS-11752a 

5) Dinosaur  -2.6 

  

HRS 08267 UGAMS-20476 

6) Lambeosaurus -2.4 

  

HRS 19114 UGAMS-20477 

 

Table 6.2 | 
13

C measurements of stable carbon isotope ratios in ‰ for three chemically 

separated fractions of six dinosaur bones: 1) Triceratops femur, 2) Hadrosaurid femur, 3) 

Triceratops 1 femur, 4) Triceratops horn, 5) Unidentified taxon, and 6) Lambeosaurus. HTCH 06
3
  

represents a fragment of the same triceratops horn core as GDFM 12001. Organic matter (OM) 

extraction as per Arslanov and Svezhentsev
44

 yields mostly collagenous residue mixed with trace 

proteinaceous remnants. HRS samples were sourced from Wyoming Lance Formation, and all 

others from Montana Hell Creek Formation.  

 

Three different pretreatments isolated three bone fractions for differential isotope 

comparisons designed to assess the primary origin of carbon isotope ratios. First, the 

collagen extraction from the bone protocol from Arslanov and Svezhentsev
43

 was 

followed. Bone was cleaned and washed using an ultrasonic bath, then dried. Dried bone 

was gently crushed to small fragments. The bone was treated with 5% HCl at 80°C for 1 

hour, then washed and with deionized water on a fiberglass filter and rinsed with diluted 

(0.1N) NaOH at room temperature for 24 hours to remove any possible humic acids. The 

sample was treated with diluted HCl again, washed with deionized water, and dried at 
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60°C. The prepared samples were transferred to quartz tubes and combusted at 900ºC. 

The dried collagen was combusted at 575ºC in evacuated/sealed Pyrex ampoules in the 

presence of CuO and the resulting CO2 captured for isotope analysis.  

Brock et al.
45

 confirmed that whereas the alkaline wash step increases protein purity, 

it also reduces collagen yield. Brock et al. used an extremely sensitive LC-MS/MS LTQ 

Orbitrap to identify specific products from typical protocols including the Arslanov 

method used in the present analysis. The Brock et al. analysis revealed a mixture. The 

vast majority of recovered protein was bone collagen, but with trace amounts of other 

protein remnants and inorganic complex residuals. Such a mixture follows from 

inefficiencies in collagen extraction by demineralisation and acidification. Brock et al. 

described no evidence for contamination, but they note that the term “protein residue” 

more accurately describes products of the Arslanov and similar methods than the typical 

use of “collagen.” Therefore, the use of “collagen” in the present study denotes 

collagenous residue plus traces of other organics that almost certainly include diagenetic 

collagen products. The Arslanov method recovered no collagen in four of our seven bone 

samples. The three that did contain collagen showed high levels of decay, with average 

yields of only 0.275% by weight. This result was consistent with the rich literature of 

primary protein residuals described in Chapter 1.   

Second, bioapatite bone fractions were separately recovered and analyzed. Again as 

per the protocols supplied by radiocarbon laboratories, the crushed bone was treated with 

diluted 1N acetic acid to remove surface adsorbed and secondary carbonates. Periodic 

evacuation insured that evolved carbon dioxide was removed from the interior of the 

sample fragments, and that fresh acid was allowed to reach interior micro-surfaces. The 

chemically cleaned sample was then reacted under vacuum with 1N HCl to dissolve the 

bone mineral and release carbon dioxide from bioapatite. 
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Third, standard archaeological bulk bone preparation was followed. Crushed bone 

was treated with 1N HCl at 4ºC for 24 hours. The residue was filtered, rinsed with 

deionized water and under acid condition (pH≈3), then heated at 80ºC for 6 hours. The 

resulting collagenous solution was then filtered, dried, and weighed. The bulk bone 

results thus combine isotopic signal from both bioapatite and organic bone components. 

 

Evaluation of Primary Sourcing 

To assess the degree of primary verses secondary carbon isotope ratios, results were 

first compared to known biological end members. They show an upper depleted 

maximum for collagen of -23.8‰ and for bone bioapatite of -7.24‰, giving a Δδ
13

Capatite-

collagen of +16.56‰. We found a lower depleted minimum for collagen of -20.1‰ and for 

bone bioapatite of -2.4‰, giving a Δδ
13

Capatite-collagen of +17.7‰. The nearest proxy in the 

literature that compared bioapatite to collagen within the same ancient bone comes from 

mammalian bones that showed an ~+7‰ offset
15

. Possible causes of the large (~10‰) 

difference between archaeological mammal bone and dinosaur bone are discussed below. 

A second assessment of our results included a comparison of our δ
13

C measurements 

with those supplied by other authors including Fricke and Pearson
21

 and Tütken
12

. In their 

supplemental information, Fricke and Pearson totaled 67 Hell Creek δ
13

C enamel and 

dentine bioapatite measurements from ceratopsian and hadrosaurian teeth from several 

microsites, ranging from approximately -1.0‰ (their -0.4‰ result was treated as an 

outlier and removed from the data set) to -9.4‰, finding a roughly Gaussian distribution 

with a mean of -5.2‰. Their study, and others like it, assessed small isotopic 

heterogeneities between taxa in order to tie the degree of primary isotope ratios partly to 

dietary and habitat expectations. In our bone samples, however, the very large 

heterogeneity between within-bone bioapatite and “collagen” fractions occurred at a 
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much broader scale. Combining Fricke and Pearson’s various dinosaur enamel bioapatite 

results decreased the resolution to a degree that permitted a generalised comparison 

between their tooth and the present bone bioapatites. Zooming out also enabled 

visualization of the large offsets between our bone bioapatite and organic components as 

Figure 6.2 shows below.  

Seven dinosaur bone bioapatite δ
13

C results ranged from -2.4‰ to -7.24‰ with a 

mean of -4.3‰.  Figure 6.2 shows that these bone bioapatite results correspond to Fricke 

and Pearson’s (2008) Hell Creek tooth bioapatite δ
13

C range. We hypothesize that if 

certain taphonomies help preserve bone bioapatites, they may simultaneously preserve 

primary isotope ratios. Stated negatively, stable carbon isotope ratios that show evidence 

of mixing within inorganic bone fractions suggest the potential of contamination of the 

organic fraction also. Fricke and Pearson demonstrated primary isotope ratios in enamel 

bioapatites. Also, new reports show that some sites better preserve bone apatites than 

tooth apatites (as discussed below.) Therefore the overlap between bone and tooth δ
13

C 

could signify that similar taphonomies helped preserve primary isotopes in Hell Creek 

and other localities.  
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Figure 6.2 | Numbers of δ
13

C measurements in ‰ VPDB binned in whole units by bone 

fraction. Light gray bars show 67 measurements of Hell Creek ceratopsian and hadrosaur enamel 

and dentine bioapatite reported by Fricke and Pearson (2008). In this study, black, hatched, and 

thin line bars show 15 δ
13

C results from 7 different dinosaur bones. The black bars show seven 

measurements of hadrosaur and ceratopsian bone bioapatites. Thin line bars show that one 

hadrosaur and two ceratopsian protein remnant (“collagen”) extracts contain heavily depleted 

δ
13

C levels relative to bioapatite, somewhat similar to biological bone offsets. Hatched bars show 

five results from bulk treatments that yield unfractionated bone. a, Brackets indicate upper and 

lower end member offsets between apatite and bulk bone fractions. b, Brackets indicate an upper 

and lower end member offsets between apatite and collagen bone fractions. 

 

a 

b 
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Discussion: Cretaceous bone proteins 

The co-occurrence of molecular preservation with carbon isotope ratio preservation 

in fossils could help alleviate tension over whether or not Cretaceous fossils retain 

primary biochemistry and inform discussions of preservation conditions that might 

contribute to this co-occurrence. The demonstrable preservation of any original isotopic 

information in the organic fraction would be consistent with many other descriptions of 

molecular preservation as discussed above and described in Chapter 1. Three tests were 

employed to assess isotopic preservation and possibly confirm molecular preservation in 

seven dinosaur bones. In one, 
13

C ratios were collected directly from dinosaur bone using 

established archaeological collagen extraction procedures. In another, 
13

C ratios were 

collected from dinosaur bone bioapatite and compared to published dinosaur tooth 

bioapatite signatures from equivalent geologic units. Similarly, they were compared to 

analogous biological (i.e., modern) bone fractions. In the third, comparison was sought 

internally between 
13

C ratios of collagen and apatite fractions from the same bones.  

Given the relative rarity of bone collagen preservation in Mesozoic sources, little to 

no recovery was initially expected. However, tiny amounts were recovered in three of the 

seven Hell Creek dinosaur bones included in this analysis. The alternative scenario to the 

recovery of primary proteins would be difficult to defend: i.e., that exogenous protein 

remnants were transported to the interior of these bones and survived standardized 

acid/base/acid decontamination protocols to finally masquerade as endogenous collagen. 

On the other hand, recovery of proteinaceous vestiges aligns with the many other 

descriptions of dinosaur bone protein remnants reviewed above. For example, Bertazzo et 

al.
32

 described collagen microfiber-sized structures in six of eight dinosaur bones from the 

Dinosaur Park Formation (see Fig 6.1). They wrote that “the preservation of soft tissues 
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and even proteins is a more common phenomenon than previously accepted.” The results 

reported here appear to echo this possibility. 

 

Discussion:  Comparison of δ
13

C in tooth versus bone bioapatite 

No extraction procedure yet invented can separate diagenetic from primary carbonate 

with 100% reliability. However, fossils contain clues that offer reasonable inferences. For 

example, Fricke and Pearson
21

 (2008) made cogent inferences from their data set to argue 

that stable isotope ratios in Hell Creek enamel, dentine, and ganoine (garfish scales) 

bioapatite carbonates are largely or wholly primary. For example, they measured offsets 

in δ
18

O and/or δ
13

C between HCF taxa that mirrored offsets between extant taxa with 

similar ecologies. Also, they argued that diagenetic alteration would have homogenized 

isotope ratios from various taxa, obscuring or even obliterating the observed offsets. In 

order to discern whether or not isotope ratios preserve at least some original signals, “it is 

simply enough to know that isotopic offsets and differences in correlation coefficients 

among animals can be preserved only if isotopic alteration does not obscure original 

isotopic information” (Fricke and Pearson 2008), and their results revealed exactly these 

isotopic offsets and differences in correlation coefficients. They also found that the offset 

between dietary δ
13

C, inferred from organic matter extracts from sedimentary matrix, and 

herbivore enamel δ
13

C from eight microsites ranging from upper Campanian to upper 

Maastrichtian and from western Montana to North Dakota consistently held to ~18‰. 

Since no known diagenetic process would manufacture such a consistent signal across 

such time and space, they concluded that their Hell Creek fossil carbonates retain primary 

isotopic information.  

The considerable congruence between their tooth δ
13

C range and our new bone 

apatite δ
13

C range as revealed in Fig 2 suggests that Hell Creek bone δ
13

C may also 
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preserve original isotopic signal. Our bone apatite δ
13

C values fall within the range of 

Fricke and Pearson’s (2008) enamel apatite values after pooling data from their various 

taxa together. Comparison between like taxa revealed similar tooth and bone bioapatite 

overlaps (data not shown) as lumping their taxa as shown in Figure 2. Also, the mean 

apatite value from Fricke and Pearson (2008) of -4.7‰ and the bone apatite mean value 

of -5.9‰ differ by only 1.2‰. (Inclusion of one outlier would raise this offset to 2.1 ‰.) 

Similar arguments made by Fricke and Pearson’s for the primary origin of their enamel 

𝛿13
C signals (grey bars in Fig 6.1) should apply to the present bone apatite 𝛿13

C values 

(black bars in Fig 6.1).  

Many workers prefer analyzing tooth enamel, citing the argument that bone 

bioapatites are more susceptible to diagenetic alteration, for example isotope exchange 

with matrix carbonates facilitated by hydrothermal circulation. Reference to literature that 

described biological 
13

C ranges in bone is offered in response to this. Tütken
12

 found a 

similar overlap in 64 Jurassic sauropod long bone bioapatite and 19 tooth enamel results. 

Sauropods had a mean enamel δ
13

C of -8.0 ± 1.2‰ (ranging from -9.1 to -4.1‰), and a 

mean bone bioapatite of -7.1 ± 1.4‰ (ranging from -10.9 to -4.7‰). Since both tooth and 

bone mean values fall far below the nearly zero values expected from contamination by 

isotopic exchange with matrix carbonates, both mineral sources appear to preserve a large 

fraction of primary isotopes. This conclusion confronts the common contention that 

enamel preserves primary isotopes with greater fidelity than bone. Review of this issue 

revealed a long-standing debate with some reporting evidence that some settings do 

preserve bone isotopes with as much or more fidelity as tooth isotopes. Could the HCF be 

grouped among those settings? 

As described in Chapter 1, bone bioapatites occur as flattened rods of roughly 30Å X 

400Å, whereas enamel crystallites range one or two orders of magnitude larger
46

; the 
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smaller crystal size of bone apatite is thought to be linked to increased susceptibility to 

recrystallization and diagenetic alteration. However, tooth enamel is not immune to 

isotopic exchange even in archaeological contexts
47,48

. Further, a recent review assessed 

comprehensive isotope data from about 150 bone and tooth samples. “The information 

provided by the carbon isotopic analysis of bone apatite is potentially as reliable as in 

enamel at least for the past 40,000 yr”
49

. After admitting that this initially “seems to 

challenge more than 30 yr of bone and enamel diagenesis research,” Zazzo (2014) argues 

that the conflict is only apparent. He suggested that tight cross-linking between bone 

collagen and associated apatites stabilizes bone in the early stages of diagenesis to 

diminish recrystallization that leads to isotope alteration. Zazzo (2014) restricts his 

observations to archaeological timescales. However, far fewer bone apatite δ
13

C results 

than might be expected have been collected from paleontological sources. This implies 

that the perception that bone preserves isotopes more poorly than enamel in all settings is 

not based on extensive data across various geologic or geographic settings. Could the 

cross-linking between collagen and bioapatite invoked to explain the persistence of 

primary isotopes across archaeological time scales also lead to persistence of primary 

isotope ratios across paleontological time scales? Reports other than the present chapter 

are consistent with this possibility.  

For example, Lee-Thorp and van der Merwe
50

, in their seminal study on fossil bone 

apatite, observed that the increase of diagenetic δ
13

C signal is “initially rapid, then 

slowing” over paleontological timescales. Elsewhere, Lee-Thorp speculates regarding the 

variable alteration effects of burial conditions on archaeological bone: “Could the crucial 

difference be that the [heavily altered] specimens used in the former studies are on a 

pathway to destruction rather than fossilization, whereas those from Die Kelders, Klasies 

and Border Cave are buried in environments conducive to fossilization with minimal 
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chemical alteration?”
51

 She observed that minimal isotopic alteration implies that 

recrystallization has not incorporated exogenous carbonates in the crystal structure. 

Instead, “Structural changes may have merely involved the rearrangement (Ostwaldian 

ripening) and/or incorporation of in situ ‘raw material.’”
51

.  The δ
13

C data for bone apatite 

presented in the current study and in published reports may indicate that protection in 

archaeological environments “conducive to fossilization” could also apply to 

paleontological settings. Our results, along with others such as Tütken (2011), are too few 

to definitively answer this question as it applies to HCF and Morrison, respectively, but 

they suggest that paleontological bone sources may preserve more primary isotopic 

information than typically suspected.  

Such considerations ultimately await empirical investigations of isotope exchange 

rates in various burial environments. Meanwhile, the data in Fig 6.1 are consistent with 

the hypothesis that some fossils preserve approximately primary HCF and Lance bone 

bioapatite isotope ratios.  

 

Discussion:  Comparison of within-bone “collagen” to bioapatite fractions 

The non-random and internally consistent pattern of dinosaur bone fraction offsets 

shown in Figure 6.2 also matches expectations from primary 
13

C ratios. In short, how 

could a single diagenetic process have altered separate bone fractions to produce the wide 

but consistent heterogeneity between bone collagenous material and bone apatite?  

Similarly, bulk bone preparations supply a cross-check of the degree to which an isotope 

signal is primary versus secondary in origin. Bulk bone incorporates both OM and 

mineral bone components. Therefore, primary bulk δ
13

C values should indicate a mixture 

of the isotope ratios from each fraction. Their positions in Figure 2 show values between 

apatite and collagen that match this interpretation.  
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However, our observed dinosaurian δ
13

Capatite-collagen value (17‰) exceeds the ~+7‰ 

offset (Lee-Thorp et al 1989) in the nearest proxy available in the literature—biological 

bone fractions for mammalian herbivores—by ~10‰. 
13

C ratios in modern versus 

paleontological bone collagen tend toward similar values, suggesting that this larger 

(~+10‰) offset results from either primary or secondary heterogeneities in the bone 

bioapatite fraction. If our bone apatite and Fricke and Pearson’s (2008) enamel results are 

principally primary as already argued, and if bulk bone and collagenous remnants 

preserve primary isotopes also as already argued, then plausible paleobiological 

explanations for such a large offset should be considered. Fricke and Pearson (2008) 

offered several possibilities to account for biological carbon enrichment they found in 

their dinosaur enamel bioapatite results, including: 

 

1. Extinct hadrosaurian and ceratopsian digestive systems differed from extant mammals 

and birds in ways that enabled them to acquire sufficient nutrients from the tough, 

fibrous plant matter that contributed to their diets. Their unknown metabolic systems 

may have enriched heavy carbon isotopes that selectively incorporated into their 

bioapatites.  

2. Different environments including uniquely Cretaceous microhabitats, and unique 

dinosaurian behaviors including competition for available resources may have affected 

dietary uptake of δ
13

C.  

3. Marine influences, including changes in sea level along widespread tidal flats, could 

favor growth of C3 plants enriched in δ
13

C.  

4. Available food may have comprised leaves exposed to direct sunlight. This canopy 

effect causes up to 10‰ higher δ
13

C values compared to understory foliage.  
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Other authors have suggested or measured additional factors that influence carbon isotope 

fractionation: 

5. Want et al
52

 suggested that the higher partial pressure of CO2 indicated by Cretaceous 

System fossils, likely producing a greenhouse effect, albeit of debated intensity, may 

affect carbon isotope ratios in plant tissues.  

6. Fernandes et al
53

 found that body size may positively correlate with Δ
13

Cbioapat-diet, with 

pigs showing a larger apatite-diet offset than rats, and rats larger than mice. Possibly, 

the larger dinosaur body sizes also increased their Δ
13

Cbioapat-collagen ratios.  

7. Tütken
12

 also noted known δ
13

C differences that arise from soil moisture, water use 

efficiency, plant growth cycles, different plant organs, and substrate salinity. 

8. Jim et al
54

 discovered a controlled isotope diet that generated a +11‰ offset between 

bone apatite and collagen in mice. They wrote, “On diets in which the Δ
13

Cprot-engy is 

negative, e.g. … where protein is C3 and energy is C4, Δ
13

Ccoll-bchol [bone collagen-

bone cholesterol offset] will be small (~+3‰) and both Δ 
13

Capat-bchol [bone apatite-

bone cholesterol offset] and Δ
13

Capat-coll [bone apatite-bone collagen offset] will be 

large (~+14 and +11‰, respectively…).”  

 

This final scenario would explain Hell Creek herbivorous dinosaur apatite-collagen 

offsets if not for the fact that C4 flora are not known in Cretaceous deposits. However, 

possibly some dinosaurian plant sources and/or metabolisms led to uptake of protein from 

C3 plant sources, but carbohydrates more often from carbon-enriched vegetation other 

than C4 plants. For example, sea grasses from inland salt marshes might be invoked, 

although the only known Cretaceous seagrass fossil is in the Netherlands
55

. In any case, a 

combination of some or all of these eight or other factors could have caused part or all of 

the observed 17‰ carbon offset. Although these paleobiological considerations do not 
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rule out the possibility of some level of isotope exchange, at a minimum they leave open 

the possibility of primary within-bone isotopic heterogeneities. 

On the whole, literature clearly demonstrates primary isotope ratios that co-occur 

with primary OM in at least nine geologic settings including certain Upper Cretaceous 

sites in Western North America. If considered primary, the δ
13

C results reported here add 

a tenth co-occurrence, in the Lance Fm. These observations are consistent with the 

suggestion of Zazzo (2014) that certain taphonomic conditions favor preservation of 

stable isotopes in bone. Future research might find that some or all of those conditions 

also favor molecular preservation.  

 

Conclusions 

Scientific literature increasingly describes direct detection of molecular preservation 

in fossils. Some of these reports include results from the gold standard of detection, bone 

collagen sequencing, as described in Chapter 1. This study adds to that trend by 

presenting the first report of δ
13

C values taken directly from collagenous remnant extracts 

of dinosaur bone, shown in lines 1-3 of Table 6.2. Literature also describes a co-

occurrence of primary isotopes and molecular preservation. The present study used three 

assessments of preservation in an attempt to evaluate the co-occurrence already described 

in the Hell Creek Fm., and to test for its extension into the equivalent Lance Fm. In one 

assessment, primary δ
13

C from dinosaur teeth were compared to dinosaur bone 

bioapatites from HCF, showing congruent signals. Though rare and of poor quality, 

recovery of sufficient collagenous remnant enabled a second assessment by comparing 

isotopes from within-bone fractions. Very large heterogeneities between bioapatite and 

OM are more consistent with primary isotopes than they are with secondary replacements 

which should have homogenized the signals. However, some degree of isotopic alteration 
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cannot be completely overruled in light of the challenge in accounting for the very large 

(~+17‰) collagen-apatite offset. Paleobiological scenarios that could have produced or 

contributed to the large δ
13

C offsets were reviewed from the literature. Third, comparison 

of within-bone bioapatite carbon isotope ratios to bulk bone fractions, which contain a 

mixture of apatite and OM, revealed offsets between apatite and collagenous remains. 

These offsets confirm the collagen-apatite offset and thus the hypothesis that mostly 

primary isotopes are preserved in HCF and Lance bones. The results of these three 

assessments therefore suggest that molecular and isotopic preservations also co-occur in 

Lance Fm. fossils. These conclusions lead to two outcomes. First, the co-occurrence of 

primary carbon isotope ratios and molecular preservation can inform future investigations 

into preservation modes that preserve both primary isotopes and molecules even 

extending to Cretaceous deposits. Last, AMS measurements of δ
13

C in fossil bone supply 

a reference point for future QMS measurements, as illustrated in the attached appendices. 

This investigation happened to include unstable carbon isotope measurements for fossils, 

and these data revealed unexpected systematic trends set forth in the next chapter.  
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Appendix 6.2 | ASMS Conference poster, June 2017.  
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Radiocarbon but not carbon dating 

The present thesis centers on the characterisation of endogenous collagen in 

archaeological bone and the contested question of endogenous collagen in fossil bone (or 

other biomineralised material like tooth or shell). Most chapters have dealt directly with 

collagen. The prior and current chapters (6 and 7) deal with the broader question of 

general preservation quality with the idea that higher preservation quality samples should 

have a higher likelihood of collagen preservation. Accordingly, carbon isotopes from both 

the organic (collagen) and inorganic (bioapatite) bone fractions were counted and 

considered. The prior chapter (6) presented δ13
C results with emphasis on Mesozoic 

specimens, with the conclusion that the ratios represent a large degree of paleobiological 

as opposed to diagenetic values. The current chapter (7) presents 
14

C results in a second 

indirect effort to explore links between isotope ratios and the likelihood of collagen 

preservation in ancient bone.  

14
C data are usually obtained for the purpose of precise radiocarbon age 

determinations in archaeological contexts. However, an alternative purpose was noted in 

chapter 6. Very precise AMS determinations of carbon isotopes were needed to 

benchmark the precision of similar measurements taken with a portable mass 

spectrometer (QMS) under development for the purpose of a field deployable device to 

obtain isotope measurements. AMS results yielded 
14

C as well as 
13

C data for the sample 

set under investigation.  

Thus, rather than temporal constraints, the main purpose herein concerns isotopic 

patterns that may relate to the degree of diagenesis versus preservation in ancient bone. 

As a result, discussions omit certain details found in most radiocarbon-related literature, 

like chronological error bars and calibrations. Instead focus is placed on broad trends with 

bearing on the degree to which isotopic signals are primary versus secondary. In 



205 
 

particular, proteinaceous signatures identified by FTIR, and more specifically collagenous 

signatures identified by SHG imaging, plus 
13

C patterns show general consistency with 

the hypothesis that some Mesozoic bone samples retain endogenous materials including 

proteins, as is consistent with the abundant literature reviewed in Chapter 1. Independent 

of these observations, 
14

C trends could also verify or contradict this hypothesis.  

43 radiocarbon results were gathered from prior projects or newly obtained from 22 

archaeological or paleontological bone samples, plus three controls, using six commercial 

laboratories. An emphasis was placed on carbon isotope analysis of dinosaur bone 

samples for two reasons. First, these were available in more abundance than 

archaeological samples. Last, dinosaur collagen is the most controversial and thus 

deserved the most attention. Table 7.1 displays basic radiocarbon results according to 

bone fraction, and Table 7.2 below lists each laboratory sample number. It excludes error 

bars and ignores calibrated versus uncalibrated results for the reasons noted above. It 

reports results in percent modern carbon (pMC). This relates to radiocarbon years (C 

years) via:  

𝑝𝑚𝐶 = 100 ∗ 0.5𝐶−𝑦𝑟𝑠/5568 

5,568 refers to Willard Libby’s original radiocarbon half-life. 1960 measurements 

supplied the more accurate value of 5,730, but for consistency’s sake the original Libby 

estimate (some labs round it to 5,570) has been used by convention to calculate percent 

modern carbon.
1
 ‘‘Modern’’ is defined as 95% of the radiocarbon concentration in AD 

1950 of NBS Oxalic Acid I (SRM 4990B) normalized to δ
13

CVPDB = -19 per mil. After 

AD 1950, so-called bomb carbon from nuclear testing increased atmospheric radiocarbon 

via neutron release, thus increasing the 
14

C ratios in the biosphere. A half-life correction 

was applied during calibration for age determinations of most of the Medieval and Roman 

Era material, since it had been radiocarbon dated to answer questions of chronological  
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Identifier Description bulk 

pMC 

apatite 

pMC  

collagen 

pMC 

NP77_109_34 Bovid radius  89.8 89.0 

NP77_109_34 Bovid radius  87.8 88.1  

NP77_109_5 Bovid femur   94.6 

NP77_109_5 Bovid tibia   93.1 

NP77_109_5 Bovid tibia   93.1 

NP71_12_9 H. sapiens ulna   90.1 

NP73_34_81 H. sapiens rib   92.0 

XA102_2001/307a Sus metatarsal & 

rib 

  77.4 

XA102_2001/98b Sus  jaw & ischium   77.4 

EHRC90001 Camelid  28.2 22.3 

EHRC90002 Megatherium sp.  8.24 <collagen 

CM00088 Stegosaurid 1.03 6.61  

CM21728 Diplodocus longus 0.71 3.52  

CM00094 Diplodocus longus  1.12 <collagen 

HRS08267 Dinosaur  0.57 <collagen 

HRS19114 Lambeosaurus sp.  1.64 <collagen 

GDFM12.001a Triceratops 

horridus horn 

1.53 0.61  

HCTH06 

(GDFM12.001b) 

“  0.88  

GDFM03.001 Triceratops 

horridus femur 

 2.08  

“ “  4.83 2.16 

“ “ (Beta) 1.38    

GDFM08.011 Triceratops 

horridus  femur 

 0.76 2.36 

GDFM04.001 Hadrosaurid femur  5.72 5.59 

“ “ 4.36 4.09  

“ “ (Beta) 6.17    

EHRC90004 Mucrospirifer 

profundus 

>0.30   

GDFM03.001 Matrix 

(Triceratops)  

8.48   

GDFM04.001 Humics 

(Hadrosaurid) 

72.7   

“ Concretion (“) 78.5   

 

Table 7.1 | Radiocarbon results. “<collagen” indicates that the sample contained insufficient 

collagen for radiocarbon age determination. “>” indicates an infinite carbon age, where the 

sample pmC overlaps that of the machine blank. “(Beta)” refers to the original beta-counting 

method of radiocarbon dating, not AMS.  
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placement. These results, recorded in Table 7.1, appear as calibrated years (cal BP). 

Mesozoic samples appear uncalibrated, since the present purposes do not require age 

determination. Some commercial laboratories present results both in pMC and 

radiocarbon years, but others just radiocarbon years (and sometimes in calibrated 

radiocarbon years). The above formula was used to convert C years to pMC where pMC 

was not provided, and thus complete the data set for Table 7.1. All results in Table 7.1 

were corrected for fractionation (called normalization) using the measured 
13

C/
12

C ratios. 

This calculation subtracts fractionation effects that occur when different biological 

materials deposit various ratios of heavy versus light carbon isotopes.  

Results from collagen fractions of GDFM03.001, GDFM08.011, and GDFM04.001 

were the least expected because they do not follow the generalised concept of 

fossilization, diagrammed in Fig. 7.1. Rather than large-scale infilling, spongy bone 

within the dinosaur samples analysed herein had porous cavities, as various figures in 

Chapter 2 revealed. Thus, although secondary mineralisation may have occurred, it did 

not manifest at a macroscopic scale in the sampled Mesozoic material. Fig. 7.1, taken 

from Keenan, 2016, also illustrates loss of organics
2
. However, results throughout this 

thesis demonstrate conclusively that although perhaps most fossils have experienced this 

loss, at least some have not. The three exceptional samples noted here contradict the 

diagrammed process, and thus deserve exploration and explanation.  

In the process of collecting the results shown in Table 7.1, several strategies were 

implemented to evaluate the degree of primary signal in carbon isotopes, especially in 

Mesozoic samples. First, 
14

C was isolated from the bioapatite fraction of a medieval bone 

(NP77_109_34) in order to compare it with the collagen fraction of the same bones, and to 

compare these within-bone similarities to the same fraction preparations from two ice age 
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Fig. 7.1 | Illustration of bone diagenesis. From Keenan (2016) a, In vivo, collagen matrix 

(yellow stripes) binds bioapatite crystallites (green). b, After burial, the organic matrix 

biodegrades or chemically decays. This opens pore spaces to permit fluid movement, which can 

dissolve or redeposit minerals. c, Secondary mineralisation decreases porosity. 

 

 (EHRC90001, EHRC90002) and three Mesozoic (GDFM03.001, GDFM04.001, 

GDFM08.011) samples. Second, NP77_109_34 collagen and bioapatite were re-tested for 

radiocarbon using a different laboratory to evaluate consistency of results between 

measurements and laboratories. Third, Cretaceous specimens GDFM03.001 and 

GDFM04.001 were analysed by multiple labs and using three fractionation protocols as 

tests for exogenous radiocarbon sourcing. Next, the submission forms for Mesozoic 

samples, did not identify taxa, and listed “Pleistocene” as the expected age. Otherwise, 

modern AMS laboratories might refuse material this old. Fifth, brachiopod shells 

(EHRC90004, Devonian) were obtained for this study upon the discovery that modern 

brachiopods use collagen as the organic binding component of their carbonate shell 
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biomineral.
3
 However, the standard radiocarbon preparation for shell resembles a bulk 

bone preparation, described below, instead of collagen extraction. Finally, three controls 

were submitted for analysis. Sedimentary matrix (Hell Creek Fm. sandy material 

described in Chapter 2) that surrounded the outer bone surface of GDFM03.001, and an 

iron-rich concretion directly adhered to the outer bone surface of GDFM04.001. Carbon 

isotope analysis of the humic acid extract (described below) was also obtained for 

GDFM04.001.  

Lab # Identifier Description pMC  

UGAMS-17385 NP77_109_34 Bovid radius 89.8 

QUBC-24093 NP77_109_34 “ 89.0 

QUBC-24091 NP77_109_34 “ 87.8 

UGAMS-20473 NP71_109_5 “ 840 

QUBC-24092 NP77_109_5 Bovid femur 94.6 

QUBC-24093 NP77_109_5 Bovid tibia 93.1 

Beta-368271 NP77_109_5 “ 93.1 

Beta-425286  NP71_12_9 H. sapiens ulna 90.1 

Beta-425288 NP73_34_81 H. sapiens rib 660 

Poz-22846 XA102_2001/307a S. scrofa metatarsal & rib 77.4 

Poz-22871 XA102_2001/98b Sus  jaw & ischium 77.4 

UGAMS-20474 EHRC90001 Camelid 28.2 

AA-106299 EHRC90001 “ 22.3 

UGAMS-20475 EHRC90002 Megatherium sp. 8.24 

AA106302 EHRC90002 “ <coll 

UGAMS-13302a CM00088 Stegosaurid 6.61 

UGAMS-13302b CM00088 “ 1.03 

UGAMS-13303a CM21728 D. longus 3.52 

UGAMS-13303b “ “ 0.71 

UGAMS-20478 CM00094 D. longus 1.12 

UGAMS-41490 HRS08267 Dinosaur 0.57 

AA-106301 HRS08267 Dinosaur <coll 
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UGAMS-20477 HRS19114 Lambeosaurus sp 1.64 

AA-106300 HRS19114 Lambeosaurus sp <coll 

UGAMS-11752 GDFM12.001a T. horridus horn 1.53 

UGAMS-11752a “ “ 0.61 

UGAMS-17387 GDFM12.001b “ 0.88 

UGAMS-17386 GDFM03.001 T. horridus femur 2.08 

UGAMS-04793a “ “ 4.83 

GX-32372 “ “ 2.16 

GX-32647 “ “ (Beta) 1.38  

UGAMS-03228a GDFM08.011 T. horridus  femur 0.76 

UGAMS-03228b “ “ 2.36 

GX-32739 GDFM04.001 Hadrosaurid femur 5.72 

UGAMS-01937 “ “ 5.59 

UGAMS-01936 “ “ 4.36 

UGAMS-01935 “ “ 4.09 

GX-32739 “ “ (Beta) 6.17  

AA-108983 EHRC90004 M. profundus >0.30 

UGAMS-02444 GDFM03.001 Matrix (T. horridus)  8.48 

UGAMS-01938 GDFM04.001 Humics (Hadrosaurid) 72.7 

GX-31950 “ Concretion (“) 78.5 

 

Table 7.2 | Sample numbers and descriptions. UGAMS (Center for Applied Isotope Studies, 

University of Georgia, GA, USA), QUBC (Queen’s University Belfast (CHRONO), Ireland), 

Beta (Beta Analytic, FL, USA), Poz (Poznan Radiocarbon Laboratory, Poland), GX (Geochron 

Laboratories, MA, USA), AA (University of Arizona AMS, AZ, USA). 

  

Preparation of three bone fractions 

Bioapatite was one of three bone fractions isolated for 
14

C analysis. Bioapatite 

includes the carbonate (CO3) fraction of bone, which generally comprises 0.6% to 0.75% 

of total bone bioapatite. Carbonate displaces some phosphate in bone hydroxyapatite 

during a creature’s lifetime. The standard procedure of bone bioapatite preparation for 
14

C 

analysis uses a dilute solution of acetic acid under vacuum to remove the superficial, 
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diagenetic CO3. Then, the CO3 fraction from bone bioapatite is dissolved in the much 

stronger but dilute hydrochloric acid and collected as CO2 under vacuum. The CO2 is then 

processed in the usual method (AMS) to obtain carbon isotope analysis. The superficial, 

diagenetic CO3 can also be collected under vacuum and carbon-dated (C dated). “This 

approach confirms that CO3 in calcined bone is very resistant to post-burial isotopic 

exchange and is the most reliable source of inorganic carbon for 
14

C dating regardless of 

the environmental conditions,” according to Radiocarbon Dating of Biological Apatites
4
.  

One experiment with long-submerged archaeological bone showed no detectable 

carbonate exchange with bioapatite, suggesting that with proper cleaning, even ancient 

bone provides an appropriate source of carbon for both radioisotope and stable isotope 

studies.  As with collagen, the oldest C age of bioapatite is considered to represent the 

more precise age for the original carbon formed during the lifetime of the once-living 

animal.   

Collagen was another of three bone fractions isolated for 
14

C analysis. It is a large, 

insoluble, fibrous protein integral to metazoan connective, epithelial, and muscular 

tissues. The modified Longin method by Arslanov
5
 and Sullivan

6
 was used in attempts to 

extract collagen from dinosaur bones. Three of six attempts did retrieve collagen, but the 

percent weight for all three was below three—insufficient for radiocarbon age 

determinations, but sufficient to confirm its presence. The typical extraction protocol 

combines two methods of purification. Briefly, the bones were mechanically cleaned, 

then pulverized and treated at between 4°C and 6°C by two to three fresh solutions of 0.5-

1.0 N Hydrochloric acid (HCl) for a few days (depending on preservation condition) until 

mineral components completely dissolved, leaving collagen protein. Respective RC labs 

then washed the collagen in distilled water until calcium and other minerals were no 

longer visible, added 0.1 N NaOH at room temperature for 24 hours, rewashed it, and 
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added weak HCl solution (pH = 3) at 80°C–90°C for six to eight hours. Humic acid 

residue was then separated from the gelatin solution by centrifugation, and the solution 

was evaporated. Benzene was synthesized from the dried gelatin by burning in a “bomb” 

or by dry pyrolysis. The purpose of the benzene is to compact the carbon, which in 

benzene is 92%. Thus, the collagen was purified by acid washing and by burning. Using 

this method, Arslanov et al. carbon dated bones that ranged in age from 20,620 ± 300 to 

31,150 ± 400 RC ybp, results that partially overlap the current data set.
5
  This procedure 

is commonly used today because it gives the oldest RC ages for collagen intrinsic to the 

bone. Typically, the older age determination from multiple fractions of the same bone is 

considered the most accurate, and the collagen fraction usually contains the lowest 
14

C 

fraction.  

“Bulk organics” refer to insoluble organics like collagen, plus the biomineral bone 

fraction. Secondary organics called humic acids include alkali-soluble material plus 

water-soluble contaminants. Humics are removed by standard Acid-Base-Acid (ABA, 

elsewhere Acid-Alkali-Acid, AAA) pretreatment as outlined above. Once the humics are 

removed, carbon is collected from a combination of the remaining bone organics and 

inorganics (bulk). The base (B) or alkali removes taphonomic or diagenetic humic acids, 

for example from surrounding soil or matrix. This pretreatment can be shown to 

effectively remove soil contaminants by precipitating the humic acids for separate AMS 

determinations. The large offset between any Mesozoic bone fraction (Average pMC 

from Table 7.1 = 2.75) and the pretreatment humic acid filtrate from GDFM04001 (72.7, 

Table 7.1) revealed the secondary sourcing of humic acid carbon, as well as the certain 

removal of humics during sample preparation. However, the high humic acid pMC value 

suggests that even very small inefficiencies in humic acid removal could affect 
14

C ratios 

in any of the three bone fractionation techniques. Therefore other observations were made 
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to search for modern humic acid contamination of Mesozoic materials, described below. 

In the preparation of all three fractions, stringent sample processing removed externally 

associated 
14

C sources. There are three logical sources for the detected 
14

C:  The original 

animal, secondary 
14

C that became intrinsic to the crystalline sample material, or more 

likely a combination of these two.  

 

Anomalous radiocarbon in the literature 

Even traces of 
14

C as shown in Tables 7.1 and 7.2 are not expected from fossils. 

Therefore a literature search was undertaken for precedents. Surprisingly, similar-looking 

results have been published from carbonaceous earth materials including fossils. Several 

materials presumed as carbon-dead have been routinely tested in searches for machine 

blanks, but they consistently show pMC values well within the detection limits of modern 

AMS devices, which are sensitive to one 
14

C atom per 10
15

 total carbon atoms, or 

~0.01pMC
7
. These include anthracite with detectable 

14
C

8,9
. Marble has a history of 

14
C 

detection
10,11

,  as does graphite from various sources
12,13

. Attempts to find carbon-dead 

sources in diamond also yielded 
14

C
14

. Such data are routinely attributed to contamination 

or in situ nuclear synthesis, although neither scenario adequately accounts for the 

geologic depth or geographic breadth of relevant results. For example, contamination 

should be isolated (rare) and not ubiquitous like it appears to be. Also, rates of in situ 

nuclear synthesis are orders of magnitude lower than what would be required to generate 

the observed 
14

C in earth materials
15

.  

Radiocarbon from fossils includes a larch wood section brought to the surface by oil 

drilling from 183 m depth at Prudhow Bay that showed >43,300 C years
11

. The collagen 

fraction then 2N HCl treatment of Coelodonta antiquitatais (wooly rhinoceros) collected 

in 1929 from Ukraine, extracted using pretreatments of benzene and ethyl alcohol to 
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remove preservatives, yielded 23,235 ± 775 RC years when tested by scintillation 

counting in 1972
10

. Standard radiocarbon methods have also been applied to other ice age 

fossil bones, including mammoths
16

,  saber tooth tigers
17

,  giant bison
18

,  and a dire 

wolf
16

. All contained detectable levels. Much older fossil material includes cortical bone 

from a mosasaur fossil found in Belgium chalk beds with a pMC of 4.68 (~24,600 C 

years)
19

. Standard acid-base-acid (ABA) pre-treating to remove contaminants such as 

calcite and humic acid were applied, making contamination an unlikely carbon source for 

this mosasaur as well as for other published examples. If the standard preparations do not 

remove sufficient secondary carbon from these materials, then nor should they remove 

sufficient secondary carbon from the untold numbers of carbon-dated artefacts. The 

mosasaur team tentatively attributed part of their result to cyanobacteria on the bone 

surface. However, they detected too few microbes to account for the obtained results. 

Even if cyanobacteria were present, their 
14

C levels should reflect the levels within the 

bones upon which they feed.  

14
C in foraminifera from sea cores proved a challenge for Nadeau et al (2001) to 

interpret
20

. The authors suggested “ubiquitous contamination” as a possible source for the 

more than 100 unexpectedly high 
14

C levels they measured. Fossil wood with 0.16
21

 and 

another wood sample with 0.16 pMC
22

 add to the list. Finally, possibly the oldest 

fossiliferous 
14

C was detected in the chitin fraction of a Cambrian sponge Vauxia 

gracilenta, at 0.57 pMC
23

. In much the same way that a robust body of published 

scientific literature supports the conclusion that original biochemistry persists in fossils, 

published radiocarbon results support the possibility that 
14

C may also persist in some 

fossils.   
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pMC per era 

Fig. 7.2 shows 
14

C results of the total bone collection arranged in order of largest to 

smallest pMC. They conform to age constraints known via Medieval, Roman Era, and ice 

age burial contexts, but show a much smaller than expected gap between ice age and 

Mesozoic contexts. They also fail to distinguish between Cretaceous and Jurassic results. 

Therefore attention was given to interpret the enigmatic Mesozoic results. This included a 

search for sources of contamination, summarised in Table 7.3 below.  

 

Searching in-bone for contamination  

Carbon dating multiple fractions of the same sample helps evaluate the reliability of 

age determinations. Large differences between the collagen and apatite fractions are taken 

to indicate contamination
24

. Typically for samples with large 
14

C offsets between 

fractions, the oldest fraction is claimed to be correct, and the youngest rejected on 

suspicion of incorporating some measure of modern carbon. However, this tendency is 

reversed in some cases where the older age contradicts contextual interpretations
25

. Thus, 

there seems to be no objective means to discern between addition of modern carbon into 

only one fraction versus subtraction of ancient radiocarbon from one fraction or the other. 

This lack of objectivity leaves open the logical possibility (though not often invoked in 

radiocarbon literature) that the younger of two fractions is closer to the age since 

deposition, and that the older of the two fractions has experienced 
14

C leaching. Table 7.3 

summarizes differences in 
14

C measurements from inorganic and organic components.  
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Fig. 7.2 | 14C results per sample arranged according to pMC. 

Table 7.3 results suggest a trend of increasing differences between bone fraction with age 

of sample, except for GDFM04.001. It shows an even greater similarity between fractions 

than the Medieval material. Additional data may reveal a trend, but these six samples 
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Identifier pMC apatite pMC collagen Absolute 

difference 

Percent 

difference 

NP77_109_34 89.8 89.0 0.80 8 

NP77_109_34 87.8 88.1 0.30 3 

EHRC90001 28.2 22.3 5.90 21 

GDFM03.001 4.83 2.16 2.67 45 

GDFM08.011 0.76 2.16 1.40 65 

GDFM04.001 5.72 5.59 0.13 2 

 

Table 7.3 | Differences between bioapatite and collagen bone fractions. 

show no consistent pattern. Even if offsets increase with time since burial, that does not 

mean that either or both bone fractions represent contamination. Bone fraction 
14

C 

differences point to some kind, but do not identify what kind, of diagenetic alteration of 

isotopes. If one were to think more highly of radiocarbon age determinations for samples 

with smaller differences between bone fractions, then the GDFM04.001 result would 

score the highest. One argument in favor of the primary origin of at least a majority of the 

measured Mesozoic 
14

C comes from the first isolations of dinosaur collagen for isotope 

analysis in GDFM03.001, GDFM04.001, and GDFM08.011. The collagen fraction is 

considered to be the ‘gold standard’ for radiocarbon age determinations in archaeological 

contexts.  

Fig. 7.3 is a plot of only the Mesozoic material by pMC, similar to Fig. 7.2, and 

identifies the bone fraction tested for each sample. No particular fraction groups at any 

position along the pMC continuum. Instead, the various fractions distribute somewhat 

randomly. If the apatite fraction preferentially incorporated secondary, recent carbon, 

then bioapatite results should congregate nearer the top right of Fig. 7.3. Instead, 

bioapatite results span the range of measured values. This matches the findings of Zazzo 

and Saliège, who evaluated a large archaeological sample set of bone and tooth fractions. 

The present data appear to confirm the conclusion that their result “confirms that 

carbonate in calcined bone is very resistant to post-burial isotopic exchange and is the 
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most reliable source of inorganic carbon for 
14

C dating regardless of the environmental 

conditions
4
.”  

 

Searching for contamination elsewhere  

Exogenous carbon sourcing would diminish the case that prior chapters have built for 

endogenous biochemistry and isotopes in ancient bone. Some pMC differences between 

bone fractions suggest inconsistencies, but do not identify them. Therefore alternative 

signals or sources of secondary carbon incorporation were considered. Table 7.4 lists 15 

possible sources of contamination and an evaluation for each. 

 

Fig. 7.3 | Mesozoic 
14

C results arranged according to pMC and bone fraction. 
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Possible Contaminants  a Pretreatments And/or Alternate Tests 

Performed 

Contaminant 

Detected 

 

Young burial carbonate  b Hot dilute acetic acid under vacuum  h None 

Old burial carbonate Hot dilute acetic acid under vacuum None 

Young humic acid  c Hot dilute acid-base-acid (ABA)  i  None 

Old humic acid Hot dilute acid-base-acid (ABA) None 

Collagen impurities Test other bone fractions for reproducibility 

and/or test for 
14

C in extracted precipitate from 

alkaline liquid  j 

None 

In-situ bone carbonate  After removal of burial carbonate the bone 

sample is treated in dilute HCl under vacuum to 

collect CO2 for 
14

C testing  k 

None 

Cluster decay of U & Th 

generate 
14

C from N in 

collagen  d  

Analysis for U and Th showed only ppm U and 

Th in bones that contained small amounts of 

collagen (Appendix 7.1).  l 

None 

Incomplete removal of 

contaminants  e  

Reproducibility across multiple labs and between 

bone fractions  m  

None 

Shellac type preservatives 

on museum bones  f 

Refluxing in a mix of two hot organic solvents 

until discolorations dissipate followed by ABA 

etc. removes both shellac, clue and PVC coatings 

n 

None 

Reservoir effect causing 

possible old ages  g 

Source of dinosaur nutrition unknown, therefore 

the 
14

C ages are considered the oldest possible 

ages; Reservoir effect far too small  

None 

Bacteria and fungus  Microbes completely and routinely removed by 

ABA pretreatment; bacteria would be the same 

age as their food source  o 

None 

14
C signature an artifact of 

low sample size 

General concordance between 21 separate pMC 

results 

None 

14
C signatures an artifact of 

geological or geographical 

province 

pMC concordance between dinosaur material 

from 3 divergent geographical and geological 

provinces from the Western US 

None 

14
C signatures an artifact of 

sample location within or 

upon fossil  

Age concordance between samples collected 

from a variety of locations within bone samples 

None 

14
C signature an artifact of 

faulty or outdated detection 

technique 

Age concordance between samples tested by 

AMS sensitive to 40ka, AMS sensitive to 60ka, 

and Beta counting technologies 

None 

Isotopic exchange All methods indirect:  comparison of 
13

C ratios or 

pMC differences in bone fractions  

Some possible 

 

Table 7.4 | Preliminary evaluation of secondary 
14

C sourcing. a. Bone fragments to be tested 

for 
14

C content are first crushed to mm-sized particles before pretreatments designed to remove 

contaminants. b. Young or old carbonates can adsorb onto bone microsurfaces during burial and 

are removed from surfaces by dilute acetic acid isolates the primary fossil carbonate. c. Young or 

old humic acids from new or old vegetation are routinely and effectively removed by alkali (base) 

dissolution. When total organics including collagen is fractionated, that portion of the bone 

sample is treated with dilute HCl to remove both bone burial and in situ carbonate. Collagen is 

extracted by the Arslenov method discussed in text. If the collagen is not a golden color or the 

percent of collagen is very low or non-existent, as in most dinosaur bones, then other portions of 

the bone are extracted for total organics and/or in-situ biological carbonate for 
14

C content testing 
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to ensure reproducibility and reliability. d. U decay cross sections are far too low to produce even 

1pMC. For Uranium’s beta decay to have supplied the detected levels of 
14

C shown in Table 7.1, 

the majority of each fossil and its surroundings would have to have been composed of U. e. 

Incomplete removal of organic contaminants could result in ages approximating thousands of 

years, but testing at five different labs and three separate bone fractions, yielding a relatively tight 

range of  (6.61 pMC (21830 C years) to 0.57 (41490 C years), is inconsistent with incomplete 

removal of organics as a contaminating source. f. Shellac type preservatives, if present, could 

yield a much younger C age if tested in place of bone. However, visual inspection and deliberate 

avoidance of sample surfaces mitigate this option. g. The reservoir effect inflates 
14

C ages, as 

evidenced by living plants with pMC’s below 7, from absorbing old carbon. h. Acid dissolution of 

adsorbed carbonates were employed by all labs. i. ABA pretreatment was used when total bone 

organics or whole bone was to be C dated. j. Collagen was extracted using the conventional 

Arslenov method with the resultant collagen weighed and then tested when available, as for 

GDFM03.001, GDFM04.001, and GDFM08.011. Also a general concordance was observed 

between bioapatite and collagen fractions (Fig. 7.3). k. Primary carbonate was extracted with 

strong but dilute HCl under vacuum after acetic acid pretreatment to remove burial carbonate. 

Intrinsic contamination would yield wide-ranging pMC’s, thus the reproducibility of the data set 

appears more consistent with the hypothesis of primary 
14

C. l. Cluster decay, if U and/or T are 

present in large amounts, could transmutate N in collagen to 
14

C only by greatly exaggerating 

either the uranium decay rates or available quantities of uranium. However, concentrations from 

Hell Creek Fm., Montana were far too low, at 0.020 mg/kg for U and 0.078 mg/kg for T 

(Appendix 7.1). m. Incomplete removal of contaminants is refuted by reproducibility of similar 

age ranges from 9 different dinosaurs plus a published Cretaceous mosasaur result. n. Shellac-

type protective coatings could skew radiocarbon results. Thus two samples were specially treated 

to test for contamination via preservatives. Hot, organic solvent pre-treatments were applied to 

CM00088, which was collected in the early 20th century, as well as to an exterior sample from 

GDFM08.011, which had a modern paleontological PVC-based coating. The results were 

indistinguishable from other bone fractions. o. Microbes, postulated as a possible source of the 

24,600 carbon year age for the mosasaur from Belgium would have been removed by the ABA 

pretreatment noted in that report
19

.  

 

Of the options considered and tested, only uniform, intrinsic contamination by 

isotopic exchange may help explain the presence of radiocarbon in the sample set. 

However, as argued above and shown in Fig. 7.4 below, the uniformity of pMC values 

across samples makes isotopic exchange difficult to defend as a means to incorporate 

recent carbon into very old bone. In particular, such exchange must have occurred before 

the secondary radiocarbon decayed. The relatively large difference between fractions in 

certain samples, and the large δ13
C offsets shown in Chapter 6 do suggest that some 

degree of isotopic exchange has possibly occurred. However, the present data do not 
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demand taphonomies with isotopic exchange. Even assuming enough isotopic exchange 

to decrease confidence in age determinations from these pMC results, it becomes difficult 

to imagine enough, exchanged recently enough, to supply all the 
14

C required to produce 

these results.  

 

 

Fig 7.4 | A trendline separates Mesozoic 
14

C results from known contaminants.  

 

Fig. 7.4 includes a linear trend that intersects, at the displayed magnification, all the 

Mesozoic bone samples and none of the controls. One would expect on the basis of bone 

material leaching outward from the bone into its surroundings that the concretion  

adhered to the outer bone surfaces would have a pMC value more similar to the bones 

than that of the matrix. Humic acid extract gave a relatively much higher pMC of 72.7, 

showing that the 21 results from any of three bone fractions are much lower than humic 

acids. Overall, the noticeable difference between the pMC values of controls and the 
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trendline suggest a qualitative difference between the fossil bone materials and their 

surroundings. Further data are required to confirm this trend. If validated, a trendline such 

as this could be used to identify outliers as spurious.   

 

Field-deployable radiocarbon detection? 

The original research aim involved development of a field-deployable QMS device 

with both the sensitivity to detect those extremely rare 
14

C atoms, and the precision 

(reproducibility) required for useful isotope data collection on-site. Although QMS 

modeling suggested these as theoretical possibilities of 
14

C measurement from evolved 

CO2, the goal has not been achieved so far in a real-world instrument. Isotopic 
14

C is 

present in evolved CO2 from pre-cleaned oxidized bones along with other isotopic 

combinations of C (
12

C, 
13

C and 
14

C) and O (
18

O and 
16

O). However  
14 

CO2 is masked by 

other mass spectrometric peaks (isotopologues) which occur at the same nominal mass. 

The interfering peaks (e.g. 
12 

C
18

O
16

O) completely swallow the much smaller  
14

C
16

O
16

O 

peak even with improved electronic control. To measure the 
14

C
16

O
16

O independently 

requires extremely high resolution and sensitivity which are not currently possible in a 

portable instrument. In the process of discovering what apparently cannot be done, the 

present AMS results were collected as benchmarks in case the QMS developed according 

to its theoretical potential. Once the large gap between theory and practice became clear, 

the AMS data set was analysed on its own merits to produce this chapter.  

 

Conclusions 

43 pMC results from known provenances showed expected decreases for Medieval, 

Roman era, and ice age samples, but failed to show the expected step-downs to 

Cretaceous and Jurassic fossils. Data collection from Cenozoic fossils, which span the 
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temporal gap between Mesozoic and Pleistocene strata, could shed light on this 

phenomenon. To that end, collaboration is currently under development to procure 

Cenozoic material from a remarkably well-preserved site on Ellesmere Island, Canada. 

The literature search revealed previously published radiocarbon in carboniferous material 

including fossils from Mesozoic and earlier deposits. This showed that although 

unexpected, the present data already have precedents.  

The first detectable pMC results from dinosaur collagen are presented. A survey of 

six collagen versus apatite pMC differences suggested that some Mesozoic material has 

experienced a degree of isotopic alteration. However, literature review revealed that this 

test does not objectively identify which, if any, fraction represents primary isotopic data 

and which, if any, fraction represents isotopic alteration. Next, 21 pMC values from nine 

Mesozoic bone samples sorted by three bone fractions (collagen, apatite, and bulk) 

showed a largely randomised distribution that does not confirm the expectation that 

isotopic alteration would affect one fraction more than another. Finally, a linear trendline 

intersects all Mesozoic bone material, but none of the three control materials at the 

resolution displayed. This both commends primary Mesozoic 
14

C and shows potential as a 

diagnostic tool to discern between primary and secondary pMC measurements.  

Taken together, all these results are most consistent with the hypothesis that 
14

C in 

Mesozoic and possibly older materials represent a combination of primary and secondary 

sources, with the caveat that no known cause of secondary sourcing stands out. Further 

testing, perhaps by additional sampling or improved analytical strategies, will be helpful 

to verify this hypothesis. 
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The status of ancient bone collagen studies   

How ancient can bone proteins get? The literature review in Chapter 1 found no 

temporal boundary, as various reports describe primary organics in fossils collected from 

representatives of most geologic systems, including the Precambrian. The trend of slowly 

but recently increasing numbers of publications shown in Fig. 1.1 suggests that future 

research may add those remaining three Systems to the list. How broadly do ancient bone 

proteins extend across earth?  Fig. 1.2 showed that of the seven continents, only two have 

not yet divulged fossils with original biochemistry. The widespread geography of fossil 

biochemicals suggests that with resource allocation it may only be a matter of time until 

fossil biochemistry is found on all continents.  

Of over a dozen techniques noted in Table 1.2, none has yet emerged as a widely 

accessible, standardised test to confirm bone collagen in ancient and especially fossil 

samples, and several are partially or wholly destructive to the sample. Therefore, the goal 

of this research was to explore inexpensive, user-friendly, broadly accepted, minimally-

invasive, and minimally-destructive techniques that could facilitate future searches into 

the geologic and geographic extent of primary organics in the fossil record. 

However, techniques do no good without adequate records and appropriate sample 

availability. Thus, chapter 2 described the core principles behind cataloging bone (and in 

principle any ancient) samples and brought together the disparate provenances of the 

three dozen bones loaned to the University of Liverpool for this project. In addition, a 

stable retrieval system that includes an accession or other catalog number to be identified 

in peer reviewed articles must be traceable to and retrievable from a permanent 

repository. More samples are entering this ongoing project, and other relationships have 

been initiated with recognised, permanent collection caretakers who foresee the value of 
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novel technologies like SHG, spectroscopic, or isotopic analyses to explore primary 

organics in ancient bone.  

 

Progress and challenges: SHG imaging 

Chapter 3 made progress toward the establishment of SHG imaging as a novel and 

revealing technique that targets bone collagen fibres. SHG fills a niche as a useful tool for 

biomedical research, but had never before been applied to ancient bone. Therefore four 

independent techniques were used to test if the SHG signals revealed in ancient and fossil 

bone correspond to bone collagen remnants: FTIR, Raman spectroscopy, collagen 

extraction for radiocarbon dating, and collagen extraction and sequencing of a medieval 

human rib that had also been imaged with SHG. The results were published in the journal 

Bone Reports and support the conclusion that SHG detects bone collagen remnants in 

archaeological and ice age samples.  

In addition, paleontological samples were imaged in attempts to evaluate the 

literature that supports the contentious concept of collagen preservation in fossil bone. 

Results from both Mesozoic and ice age samples revealed that most but not all samples 

within the collection showed collagen traces, although faint and few. Thus, chapter 3 

includes the first SHG images of dinosaur bone collagen signals in situ. Because collagen 

signals were so faint in the oldest bone samples, a technique was developed to generate 

bone surface images of the same area as SHG images. Resulting composite images 

provide context for trace SHG signals and could provide a basis for the use of SHG to 

quantify collagen in bone, including collagen loss from bone in decay experiments, e.g., 

Chapter 5. Chapter 3 also showed that SHG imaging is sensitive enough to capture 

collagen remnants in samples that yield too little collagen from extraction protocols 

aimed at isotope analyses. Therefore, in addition to providing new information on the 2-D 
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and 3-D structure of decayed bone collagen, SHG has potential as a screening tool that 

could efficiently detect bone collagen in samples of interest.  

One weakness of SHG imaging is that it relies on a large, expensive, and uncommon 

device. This limits its applicability to broad fields such as archaeology or paleontology. A 

next logical step would involve the development of a portable SHG microscope for on-

site bone collagen assessment.  

Another weakness of SHG is that it interacts only with highly structural collagen 

fibres. Different approaches would be required to analyse smaller collagenous remnants 

like collagen subunits. For example, a matrix-assisted laser desorption ionisation 

(MALDI) Orbi-Trap mass spectrometer generates an ion image of a specified area of a 

sample surface. It has not been used on ancient or fossil bone, and offers at least three 

benefits. First, it could provide an independent verification of the specific distribution 

pattern of collagen on a particular bone sample surface, for example patterns revealed in 

SHG images. Second, it would precisely identify small molecules on the bone surface like 

collagen subunits and collagenous breakdown products. Last, the high sensitivity 

(>1ppm) of OrbiTrap detectors suggests that a MALDI OrbiTrap could map even smaller 

collagenous remnants than the collagen fibres that SHG visualizes, and detect even 

smaller concentrations. It would thus nondestructively help verify SHG imaging results of 

ancient bone collagen while providing new insights on bone protein decay in situ. 

SHG imaging is also limited in its depth of penetration beneath the sample surface. 

Although micro-computed tomography (Micro CT) does not detect organics, it does map 

density differences within deep bone. Micro-computed tomography imaging uses X-rays 

to penetrate beneath sample surfaces to nondestructively image deep within a sample. As 

such, it can assess the general degree of permineralisation of a fossil bone. It can also 

specify the degree of permineralisation in small, internal regions or microregions of a 
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single bone sample. Such small regions should be considered likely zones of preservation 

that offer higher chances of containing original organics assuming a low temperature 

history for the bone. If density patterns correlate with likelihood of organic preservation, 

then micro CT scans could help identify regions for further exploration, including internal 

pockets of preservation in what would otherwise appear to be a fully mineralised bone.  

 

Progress and challenges: Infrared spectroscopy 

Infrared spectroscopy, including FTIR and Raman, are attractive to ancient bone 

research because of their low cost, ease of use, low sample destruction requirements, and 

because they can target very specific chemical bonds in situ. A particularly useful module 

for FTIR called Attenuated Total Reflectance (ATR) interfaces with finely powderised 

material. Its application to ancient bone collagen found use through the collagen-specific 

carbonyl-to-apatite peak ratio as recently established for forensic analysis of bone. 

Results in Chapter 5 confirmed that ATR-IR can quantitatively assess amide carbonyl 

bond content in artificially decayed bone.  

FTIR was applied to several dozen ancient bone samples to assess its usefulness in 

detecting collagen remnants. Results described in Chapter 4 showed a general trend, as 

expected, of smaller CO/P ratios for older bones. However, the ATR-IR results from 

ancient bone were too scattered to plot a statistically significant collagen decay curve. 

Later, it was learned that crystallinity of the sample affects FTIR peak heights (and 

positions) and thus any ratios based on them. Protocol systematisation promises to open a 

door to obtaining a more informative curve by effectively normalising the contribution of 

crystallinity to ancient bone spectra. Chapter 5 included such a protocol to show the novel 

application of FTIR to precisely assess bone collagen in artificial decay experiments. 
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Although these two IR techniques can confirm the presence of amide bonds in a 

sample via the amide carbonyl, they share a weakness in their inability to identify specific 

proteinaceous sources. MALDI OrbiTrap would address this by identifying specific 

ionised proteinaceous biomaterials. 

Neither infrared spectroscopy nor SHG imaging can effectively assess bone samples 

or regions within a bone most likely to preserve primary protein. Energy-dispersive X-ray 

spectroscopy (EDS) examines the distribution of elements at various points of an exposed 

bone surface. EDS can identify the elemental composition of original bone mineral, as 

opposed to secondary mineralisation, to explore general bone contexts that suggest 

likelihood of original bone protein preservation. It has been used as an independent 

verification of molecular techniques, and could be used to verify the spectroscopic, 

microscopic, and spectrometric techniques used in this thesis. In addition, the elemental 

mapping potential of EDS would more comprehensively establish the composition of the 

sample material. 

 

Progress and challenges: Isotope analysis 

Isotopic techniques were used to approach ancient bone collagen indirectly. 
13

C/
12

C 

ratios co-occur in geologic formations and archaeological settings that yield collagen 

remnants in bone. Analysis of AMS-based stable carbon isotope patterns in dinosaur bone 

samples led to two deductions. First, their range of values generally corresponded to those 

published for dinosaur teeth. This suggested that both teeth and bone from the Hell Creek 

Fm. may retain some or all original isotope values. Second, comparison of the δ
13

C offset 

between organic and mineral bone fractions was equivocal; i.e., larger than in natural, 

modern biological bone as though it includes a portion of secondary isotope content, and 

yet consistently patterned as though it includes all or mostly primary isotope content. One 



235 
 

weakness of stable isotope analysis is its dependence on laboratory-bound instruments. 

Progress toward a field-deployable quadrupole mass spectrometer with sufficient 

resolution for isotope analysis was made within our Mass Spectrometry Group, as 

described in Appendix 6.2. 

 Finally, analysis of unstable carbon isotopes gathered from the various catalogued 

bones within the present collection provided two key results. First, 
14

C was found in 

amounts far above the AMS theoretical detection threshold and high enough above 

background levels to assign finite carbon age estimates to 21 Mesozoic samples. Last, 

Chapter 7 reported 
14

C results obtained directly from dinosaur bone collagen extracts. 

This was consistent with the many published descriptions of Mesozoic collagen as well as 

the first SHG images of collagenous remnants in Cretaceous bone as per Chapter 3. It 

remains possible that some of the detected 
14

C was secondary, although none of a dozen 

or so possible sources of contamination were found to reasonably account for the results.  

 

Initial results: MALDI-OrbiTrap  

MALDI uses a soft-ionisation process whereby a sample is dissolved in or mixed 

with an appropriate chemical matrix. Laser ablation ionizes the uppermost molecules of 

the sample surface. Its soft ionisation can help preserve the integrity of labile, ancient 

proteins as they travel through the instrument. Internal vacuum pressure plus electric 

fields direct the ions toward the OrbiTrap, which separates and detects the milieu of ions 

within each sampling. The density of sample spots and total coverage of the rastered area 

can be adjusted to optimise efficiency of data collection.   

Initial MALDI results were gathered from eight bones of various settings before the 

device, housed at the Laboratory of Imaging Mass Spectrometry at The University of 

North Texas (UNT), lost operability. Matrix was added to the surface of bone thinsection. 
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Each slice was affixed to the sample plate for mass imaging. Figure 8.1 shows a 

preliminary result. The output can profile the total ions in the imaged area or selected 

mass ranges. However, ion fragmentation was not performed, yet fragmentation patterns 

are required for precise chemical identification. Once the instrument is back online, future 

attempts to use it on ancient bone must include a fragmentation protocol, as well as 

expertise on interpreting fractionation patterns in mass spectra. MALDI OrbiTrap mass 

imaging has the potential to characterise protein remnants in situ, for direct comparison of 

collagen distribution revealed by SHG images of the same bone surfaces. Future use of 

MALDI OrbiTrap on ancient bone should both verify the collagenous remnants detected 

either directly or indirectly using other techniques, and reveal different, smaller, 

vertebrate-specific molecular remnants.  

 

Initial Results: Micro CT Imaging 

In micro CT imaging, density differences are mapped onto planar images captured 

from several rotated angles. Software renders these into 3D images that reveal internal 

morphologies. Figure 8.2 shows initial results using a Bruker benchtop micro CT scanner 

to produce digital cutaway segments of Triceratops femur GDFM03.001 and hadrosaur 

femur GDFM04.001. The dinosaur samples share many morphological characters of 

modern and medieval bone (data not shown), but also differences. Both bone sources 

share generalised patterns of bone trabecular spacing and a higher density of cortical 

bone. However, the dinosaur bone trabecular spaces were less regular in size, and 

contained small regions of higher density shown in blue in Fig. 8.2. These likely resulted 

from partial permineralisation within bone pore spaces. Considering the identification of 

traces of endogenous collagen in these samples using collagen extraction, FTIR, and SHG 

imaging, a preliminary observation follows that some molecular preservation occurs even  
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Fig. 8.1 | MALDI OrbiTrap mass spectrometric imaging of medieval human bone surface. 

Data offer proof of concept that MALDI OrbiTrap can provide novel information of ancient bone 

surfaces. a-c, Total ion count (TIC) from H. sapiens rib NP73_34_81, Sk101. d-f, Mass 1302 

from same sample. a, 3D distribution of TIC across the 1 mm
2
 sampled bone surface. b, 2D 

distribution of TIC across sampled bone surface c, M/Z spectrum from cursor point shown in b. d, 

3D distribution of mass 1302 across 1 mm
2
 bone surface. e, 2D distribution of mass 1302 across 

the same bone surface. f, M/Z spectrum over the boxed area shown in e. 

 

in bones that exhibit the partial permineralisation that Fig. 8.2 indicates. Further work 

with all these techniques on additional samples would be required to explore possible 

factors, for example depositional settings, contributing to the preservation of organics. 

 

Initial results: EDS  

With EDS, typically an X-ray beam excites electrons within various elements in the 

sample. Electrons that fall to lower-energy shells emit characteristic X-ray spectra. Figure 

8.3 shows a portion of some initial EDS results obtained from the outer surface of 

Edmontosaurus specimen GDFM18.001 excavated in 2017. Houston Electron 

Microscopy was contracted to examine the specimen, and Figure 8.3 images were clipped 

from their resulting pdf file. It verified the presence of elements consistent with the 

mineral accretions expected from long burial. However, other points along the bone 

surface revealed the presence and proportions of elements very similar to biological bone, 

including calcium, phosphorus, oxygen, and carbon. This result was consistent with the 

FTIR spectrum of GDFM18.001, shown in Fig. 4.7, which generally aligned with modern 

bone. If EDS merely distinguishes between biomineral and secondary mineralisation, then 

FTIR would be a much more cost effective technique to investigate that same question. 

However, it appears that EDS could help identify regions within a bone sample that 

contain element ratios consistent with fresh bone and thus more likely to preserve primary 

organics. 
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Fig. 8.2 | Sample micro-CT radiographs of two fossil dinosaur bone samples. Artificial color 

scale shows relative density in RGB, with blue as the highest density. Images courtesy of Tom 

Fildes (UoL). 
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Fig. 8.3 | EDS results show elemental proportions consistent with biological bone on the 

surface of Edmontosaurus GDFM18.001. a, Scanning electron micrograph of  fossil surface 

shows three still-biomineralised spots sampled by EDS b, Table of elemental constituents 

sampled from spots 2,3, and 4 in a. c, Sample fossil bone EDS spectrum. Results courtesy of Dan 

Biddle (Biddle Consulting Group). 
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Conclusion 

Overall, the research results in this thesis verified rather than refuted the well-

contended hypothesis that very ancient bone does indeed retain primary collagen. Further, 

the novel application of various techniques described herein, namely isotope analysis by 

AMS, infrared spectroscopy, and SHG imaging, were successfully applied to, and showed 

potential to reveal new information about, ancient bone collagen. Further development of 

portable QMS also promises to perform stable isotope analyses in the field. FTIR and 

SHG showed particular usefulness as technologies to quantify bone collagen decay and to 

provide information about the preservation of organics in medieval and Roman era bone 

collagen. 
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