

Studies of Cs₃Sb Cathodes for the CLIC **Drive Beam Photoinjector Option**

Irene Martini, Eric Chevallay, Steffen Doebert, Valentin N. Fedosseev, Christoph Hessler, Mikhail Martyanov CERN, CH-1211, Geneva 23, Switzerland

MOPFI058/SUPWA048

Introduction	CLIC and the PHIN Photoinjector						
Within the CLIC (Compact Linear Collider) project feasibility study of a	 The 3rd CLIC Test Facility (CTF3) at CERN [1] is operated with a drive beam produced using a thermionic gun and a sub-harmonic bunching system 	CLIC and PHIN design parameters					
photoinjector option for drive beam is	 This baseline setup creates the required time-structure but generates also 	Parameter	CLIC	PHIN			
on-going.	parasitic satellite bunches, which cause beam losses and radiation issues.	Charge/bunch (nC)	8.4	2.3 (nominal) 9.2 (achieved)			
This R&D program covers both the laser and the photocathode side.	 In the PHIN photoinjector, with its RF gun and the phase-switching set-up installed on the laser bench, satellite-free beam production has been 	Bunch length (ps)	10	10			
		Bunch rep. rate (GHz)	0.5	1.5			
	demonstrated [2].	Number of bunches	70000	1800			
The available laser pulse energy in ultra-		Train length (µs)	140	1.2			
violet (UV) is currently limited by the	 The CLIC drive beam design parameters cannot be completely achieved with PHIN. The main challenge is to achieve high bunch charges, long trains and high bunch repetition rates together with sufficiently long cathode lifetimes. With Cs₂Te cathodes using UV laser light lifetimes of up to 300 h could be achieved for nominal PHIN parameter[3] but for 140 μs long trains the UV generation is a major issue and not yet solved. 	Charge/train (µC)	590	4.1			
optical defects in the 4 th harmonics		Macro pulse rep. rate (Hz)	50	5			
frequency conversion crystal induced by		Charge stability (%)	<0.1	<0.25			
the 0.14 ms long pulse trains.		Beam current/train (A)	4.2	3.4			
Potential solution of the problem: Cs ₃ Sb		Cathode lifetime (h) at	>150	>50			
		QE>3% (Cs ₂ Te, UV laser),					
photocathodes sensitive to green light.		QE>0.5% (Cs ₃ Sb, green laser)					

Cathode Production by Co-deposition

The cathodes were produced and characterized at the CERN photoemission laboratory, where a dedicated preparation set-up and a 70 keV DC electron gun including a diagnostic beam line are available [4].

Co-deposition process

Cathode Lifetime Measurements

The lifetime was measured in the DC gun setup at the photoemission laboratory probing them with green laser beam at high repetition rate (up to 2 kHz).

Low average current measurement

- Cathode #188 (previously used) generated 321 mC over almost 4 days (average current: $1 \mu A$).
- Pressure in the gun below the detection limit (<10⁻¹¹) mbar).
- The 1/e cathode lifetime is 530 hours (3 times higher than the lifetime previously measured at PHIN photoinjector [6]).

- The stoichiometric ratio of the vapor mixture is controlled by two different thickness monitors.
- QE is monitored during the deposition cycle to optimize the process.

QE improvement

The QE rise during the first hours of electron beam generation in the DC gun. This initial QE

15

improvement was observed also for Cs₂Te cathodes [5].

Cs₃Sb cathodes produced by co-deposition

No.	Initial QE (%)	Max QE (%)	Evaporated	Evaporated	Final stoich.
			Cs (nm)*	Sb (nm)*	ratio*
178	0.3	0.5	120	18.4	2.9
179	1.4	2.3	156	24.5	1.74
180	0.6	1.0	52	14.4	0.82
187	0.3	0.4	67.6	4.7	4.9
188	1.3	2.2	152	17.8	2.3
189	2.3	4.4	64	15	1
191	5.4	7.5	156	14	1.7
192	2.0	2.7	9.7	3.5	0.66
193	4.2	5.8	10.8	7.6	0.66

- Cathode #192 generated 33 C over 3 days (average current: 120 μ A). The 1/e cathode lifetime is ~19 h.
- Pressure in the gun $< 8*10^{-11}$ mbar.
- QE[%] The lifetime is lower due to the chemical poisoning of the cathode surface: the higher the beam current the higher the desorption induced by beam losses [7].
- Similar lifetimes at PHIN for pressure ~4* 10⁻⁹ mbar, but lower average beam current. Possible explanation: ion back bombardment (a beam dependant degradation process) which is stronger in DC than RF guns[8].
- The initial flat top QE map (left) experienced an overall QE reduction (right). The peak in the center, where the laser hits the cathode, might be due to a laser cleaning process already observed with Cs₂Te cathodes[5].

Conclusions/Outlook

High quality Cs₃Sb cathodes sensitive to green laser beam were produced by co-deposition.

- Excellent QE values of up to 7%.
- No obvious correlation between QE and the final stoichiometric ratio or the evaporated quantity.
- More production data is needed for a detailed analysis.

- Further investigations of the photoemissive layer with XPS analysis are planned.
- The lifetime measurements at low average beam current have shown very promising results. The quick degradation for Cathode #192 under high average beam current might be related to its thin photoemissive layer and studies of cathodes with thicker layers will be considered.
- The recently produced cathodes will be tested in the PHIN RF photoinjector with beam parameters beyond the nominal PHIN values.
- [1] G. Geschonke et al., CTF3 Note 2002-047, CERN (2002). [2] M. Csatari et al., Nucl. Instr, And Meth. A 659 (2011) p.1. [3] C. Hessler et al., Proc. of IPAC'12, New Orleans (2012) p.1554. [4] E. Chevallay, CTF3 Note 104, CERN (2012).
 - [5] E. Chevallay et al., CTF3 Note 020, CERN (2011). [6] C. Hessler et al., to be published. [7] R. Barday et al., AIP Conf. Proc., Vol. 915, pp. 1019-1024 (2007) [8] R.P. Fliller III et al., Proc. PAC'05, Knoxville (2005).

LA³NET is funded by the European Commission under Grant Agreement Number GA-ITN-2011-289191

