T. Day Goodacre ${ }^{1,3}$, V.Fedosseev ${ }^{1}$, D. Fink ${ }^{1}$, T. Kron ${ }^{4}$,

 B. Marsh ${ }^{1}$, R. Rossel ${ }^{5}$, S. Rothe ${ }^{1}$, M. Seliverstov ${ }^{2}$.${ }^{1}$ CERN, Switzerland
${ }^{2}$ PNPI, Gachina, Russian Federation ${ }^{3}$ University of Manchester, UK
${ }^{4}$ Johannes Gutenberg-Universität Mainz
${ }^{5}$ Hochschule RheinMain, Wiesbaden, Germany

Figure 1. Elements with haviable schemes at RLILS. The key identities which lasers are used in the
schemes and also the elements where it is feasibie that schemes could be deveveloped. IImage by se

The addition of 3, Nd:YAG pumped, titanium sapphire (Ti:Sa) lasers to the ISOLDE resonance ionization laser ion source (RILIS) presents the opportunity to consider ionization schemes that require laser wavelengths beyond the effective range of the dye laser system. The proven ability to use a combination of dye and Ti:Sa lasers for a single ionization scheme (Rothe, 2012), enables a broadening of the search for optimal ionization pathways. An extensive ionization scheme study, to localise suitable auto-ionizing states (AIS) and to establish new ionization schemes, for elements of potential interest at ISOLDE, is underway.

Elements for which resonance ionization, with the RILIS lasers, is feasible but a suitable scheme has yet to be developed:

Specific elements identified because of potential ISOLDE user interest.

Scheme development will take place with a reference cell to be installed at RILIS.

Opportunistic scheme development, during normal RILIS operation, is possible by taking advantage of suitable laser configurations, in place for other runs.

Elements with a low ionization potential so surface ionization suppression and/or a particularly efficient scheme is required:

Scheme development at the LARIS lab is preferable due to the broad scanning capability of the MOPO system.

The new availability of the Laser Ion Source and Trap (LIST) for surface ion suppression (PhD work of Daniel Fink and Sven Richter) increases the potential interest in using RILIS for surface ionized elements.

Literature search

Resonance ionization spectroscopy

Saturation measurements

Efficiency

 measurements

Developed at the University of Mainz by Tobias Kron (Kron et. al 2013) for the active control and monitoring of laser beam characteristics during
runs.
Currently installed for testing at the Off-line lab.
Plans to fibre couple the laser light directly into the reference cell.
Water cooling for the rear and a gas spectrum analyser, that would be installed opposite the SEM, are also being considered.

The RILIS lab at ISOLDE is equiped with 3 , Nd:Yag pumped, dye lasers The RILIS lab at ISOLDE is equipped
and 3, Nd:Yag pumped, Ti:Sa Lasers. Tests are performed with the RILIS system under standard operating conditions, therefore there is no uncertainty about a developed scheme's compatibility.
Time constraints due to limited beam time and complex scheduling mean that dedicated scheme development is limited to $1-2$ weeks per year. All other tests must be performed in an opportunistic way during standard RILIS operation.
At ISOLDE, scheme development can be performed 'on-line' for elements with no stable isotopes, examples of this include Polonium (Cocolios and Marsh et al. 2008) and Astatine (Rothe 2012).

http://riliselements.web.cern.ch

RILIS elements database developed by Martin Klein and Sebastian Rothe. A communal resource for all RILIS (not just ISOLDE's) schemes.

Unsuccessful AIS searches could be recorded in the notes: saving everybody's time!

The website is fully functional but still in the testing phase so recommendations are more than welcome...

Elements where a scheme exists that uses Elements with suboptimal schemes or laser non-resonant ionization, but an auto-ionizing configurations: state is desired:

Co, Ge: compare existing non-resonant RILIS schemes to AIS schemes developed by Mainz/Ganil (Kessler et al., 2007; Gottwald, 2011) .

Nd : look for a more efficient scheme than currently exists, done in collaboration with LAL at ORSEY.

Co, Ge development will take place at RILIS, Nd at LARIS.

Hg: improve existing sub-optimal scheme by incorporating a Ti:Sa within the previous dye laser scheme.
The incorporation of a Ti:Sa allows for the dye pumping to be concentrated on producing fewer beams.

Development to take place at RILIS as part of an extended setup for a Hg run.

