Characterisation of gas-jet targets for laser-plasma electron acceleration

J.P. Couperus, A. Köhler, A. Jochmann, A. Debus, A. Irman and U. Schramm

Laser Particle Acceleration Division Institute of Radiation Physics

Motivation: Laser Wakefield Acceleration

- In laser-plasma electron acceleration a high intensity ultrashort laser pulse drives plasma waves, inducing a high field gradient (~GV/m) which can accelerate electrons to high energies within a very short distance.
- For applications, e.g., ultra-fast pump-probe X-ray spectroscopy as a preparation stage for XFEL 2015, important issues are tunability, stability and scalability.
- To address these issues we carefully analyse the acceleration targets, enabling: PIC-on-GPU simulations using real-life experimental parameters.

Precise control and adjustment of experimental parameters.

PIC-on-GPU simulation (64 NVIDIA Fermi GPUs) of wakefield formation in the bubble regime. One 3D simulation requires only 45 minutes of simulation time. H Burau, et al, IEEE Trans. on Plasma Sc. 38(10), 2831-2839

gas density [cm⁻³], He 40 bar, 700µm above nozzle

LWFA target characterisation: Mach-Zehnder interferometric tomography

- Tomographic reconstruction:
 - o no assumption of centro-symmetry as is the case with Abel reconstruction:
- Non-centrosymmetric targets can be analysed. lacksquare

- 5 mm slit nozzle LWFA target without knifeedge attachment
- Tomography vs. Abel inversion
- Imperfections in cylindrical Ο nozzles can be revealed.

- Two-stage acceleration target:
- A knife edge induced shock forms a density down-ramp gradient up to Ο
 - 8 x 10¹⁹ cm⁻⁴ as down-ramp injection stage
 - Followed by a 2.5 mm acceleration plateau stage

Facility

Combined facility with access to both high intensity laser & conventional electron accelerator: lacksquareo Thomson backscattering experiments as stepping stone towards fully laser driven Thomson backscattering x-ray source.

Outlook

A stable compact laser-driven electron accelerator can be used as a driver for unique x-ray sources via: electron/laser Thomson scattering

betatron radiation

**** * * ***

Laserlab

Europe

PEOPLE

Superconducting linac ELBE		Thomson backscattered x-ray photons Traces (data) & Base layer (simulation) DRACO laser parameters on target: 90 mJ, 500 fs, 35 μm (FWHM), a ₀ =0.05 ELBE parameters on target: 77 pC, 9 π mm/mrad, 170 μm (FWHM) Jochmann et al., PRL in press	X-ray characteristics: • finite bandwidth	• • • • • • • • • • • • • • • • • • •
Thermionic SRF	<u>1 PW TI:Sa Laser DRACO</u>		 tuneable 	15.021302 (2012)
pulse frequency 10 Hz 1 Hz	• $\lambda_0 = 800 \text{ nm}$		• ultra-fast (~fs)	
beam energy 24 - 30MeV	10 Hz repetition rate			
bunch length 4 ps (FWHM)	• 2 beam output			
bunch charge 177 pC 177 pC	• Up to $25 \downarrow \pm 4 \downarrow$ on target		Such a source enables new experiments such as	
trans. emittance 15 π mm 5 π mm mrad mrad	• 30500 fs pulse width (FWHM)	5.6 m	ultra-fast pump-probe X-ray spectroscopy.	
				A - A

Jurjen P. Couperus | Institute of Radiation Physics | Laser Particle Acceleration | j.couperus@hzdr.de | www.hzdr.de/fwt

LA³NET is funded by the European Comission under Grant Agreement Number GA-ITN-2011-289191