Population Neuroscience

S

On critical periods and reverse causality. Recent results from the Generation R birth cohort

Longitudinal Developmental Science from Birkenhead to Bangalore Conference

Henning Tiemeier, MA MD PhD

Child and Adolescent Psychiatry & Epidemiology, Sophia Children's Hospital, Erasmus MC Rotterdam

Overview of the presentation

- Introduction
- Shared method variance bias
- Reverse causality
- Critical periods
- My current favourite longitudinal result from Generation R

Design Generation R

- Prospective cohort design
- From early foetal life
- 9,778 mothers and their children
- Detailed measures in Focus cohort (N=1,106)
- Urban, multi-ethnic population

Generation R: National origins

Based on classification according to the CBS, 2004; Missing: (12%)

Ultrasound Measures

Blood (mother, father and child) and thus omics

Overview of design and assessments

Ultrasound Measures

Birth

Blood (mother, father and child)

Questionnaires

Child Behavior (mother and father and teacher)

Child Cognition

9

10

2

Conception

Child assessment to address shared method variance bias

Parental depression and maternal rep

Mother report*

					<i>p</i> -	
Life-time depression	%	N	В	95% CI(B)	value	
		Emotion	al prob	lems		
Father	15.9	3175	0.10	0.01;0.20	0.032	
Mother	27.7	3176	0.26	0.19;0.34	0.000	
		Behavior	al prob	olems		
Father	15.9	3165	0.13	0.04;0.23	0.005	
Mother	27.7	3166	0.23	0.15;0.31	0.000	_

Ringoot et al., J Clin Epi, 2015

Parental depression and child reporter

Child report*

Life-time depression	%	N <i>B</i> 95% <i>CI(B) p</i> -value		<i>p</i> -value	
		Emotional pr	Emotional problems		
Father	15.9	3175	0.12	0.03;0.21	0.009
Mother	27.7	3176	0.11	0.03;0.19	0.004
		Behavioral p	roblen	าร	
Father	15.9	3165	0.15	0.06;0.24	4 0.001
Mother	27.7	3166	0.06	-0.01;0.14	4 0.112

Adjusted for parent age at intake, income, marital status, maternal educational level, smoking during pregnancy, child ethnicity, child gender, child age at interview, number of siblings, and verbal abilities of the child

Paternal report, parental depression and child report

	Child age 3 yr					
Lifetime depression.	Fathe	r report (CBCL) ^a	Mothe	Mother report (CBCL) ^a		
(dichotomous)	В	95% CI	В	95% CI		
	E	Emotional problems score $N = 2,573$				
Father	0.25	0.14, 0.35***	0.14	0.04, 0.25**		
Mother	0.17	0.09, 0.26***	0.25	0.16, 0.33***		
	Behavioral problems score $N = 2,573$					
Father	0.24	0.13, 0.34***	0.18	0.07, 0.28**		
Mother	0.17	0.08, 0.26***	0.20	0.11, 0.28***		

Adjusted for parent age at intake, income, marital status, maternal educational level, **Ringoot et al.**, **J Clin Epi**, **2015** ethnicity, child gender, child age at interview, number of siblings, and verbal abilities of the child

Reverse causality an obvious example: feeding

Feeding scales (/SD)	Child BMI SD score	Р
	BMI at age 4 y	
Feeding at age 2 y		
Pressuring feeding		
Unadjusted	-0.04 (-0.07, -0.01)	0.04
Confounder adjusted	-0.04 (-0.08, -0.01)	0.01
	BMI at age 6 y	
Feeding at age 4 y		
Restriction		
Unadjusted	0.08 (0.05, 0.10)	<0.001
Confounder adjusted	0.07 (0.04, 0.09)	<0.001
Pressure to eat		
Unadjusted	-0.13 (-0.16, -0.10)	<0.001
Confounder adjusted	-0.17 (-0.19, -0.14)	<0.001

Confounders included child age, child ethnicity, maternal education, and maternal BMI.

Feeding and child weight

Feeding scales (/SD)	Child BMI SD score	Р
	BMI at age 4 y	
Feeding at age 2 y		
Pressuring feeding		
Unadjusted	-0.04 (-0.07, -0.01)	0.04
Confounder adjusted	-0.04 (-0.08, -0.01)	0.01
Further adjusted for child BMI at 2 y	-0.01 (-0.04, 0.01)	0.32
	BMI at age 6 y	
Feeding at age 4 y		
Restriction		
Unadjusted	0.08 (0.05, 0.10)	<0.001
Confounder adjusted	0.07 (0.04, 0.09)	<0.001
Further adjusted for child BMI at age 4 y	0.01 (-0.01, 0.03)	0.25
Pressure to eat		
Unadjusted	-0.13 (-0.16, -0.10)	<0.001
Confounder adjusted	-0.17 (-0.19, -0.14)	<0.001
Further adjusted for child BMI at 4 y	-0.02 (-0.04, -0.01)	0.01

Or as a path-model

Jansen et al., Am J Clin Nutri, 2014 Is baseline adjustment overcorrection or does it introduce some collider bias?

Certainly in studies of Change (delta)

But to some extent also in longitudinal studies with lagged variables

Peto dubbed this the horse-racing effect: "In a race between fast and slow horses ... one would expect to find the faster horses out in front halfway through the race"

Problems with adjustment occur if:

Measures of the outcome fluctuate because of imperfect measurement reliability or latent variable instability; or

Change has already occurred prior to the baseline measurement, the rate of change experienced in the past predicts the future rate of change, and exposure is unaffected by baseline function.

Thus with more follow-up and as a cross-laged model

CHILD BODY COMPOSITION AND RESTRICTIVE FEEDING

Derks et al., Am J Clin Nutri, 2017

Brain and Behaviour: Direction of effects?

The MRI pilot Imaging study of children aged 6 to 8 years

N=1070 of which 760 acceptable quality

Sequences at MRI

A longitudinal imaging study

FIGURE 1. Timeline of Data Collection Points in a Study Tracking Brain Development and Dimensional Psychiatric Symptoms in Children^a

^a The figure indicates the age ranges of study participants during each type of assessment.

Muetzel et al., Am J Psych, 2017

Tracts are group average representations in standard coordinate space.

blue	cingulum bundle
gray	forceps major
tan	forceps minor
red	inferior longitudinal
	fasciculus
orange	superior
	long. fasciculus,
green	uncinate
	fasciculus

R = Right, L = Left, A = Anterior, P = Posterior, I = Inferior, S = Superior

Design of analyses

FIGURE 3. Cross-Lagged Panel Models Applied to Assess Macro- and Microstructural Brain Changes and Dimensional Psychiatric Symptoms in Children^a

^a Panel A depicts the general modeling strategy used for cross-lagged panel models. Panel B depicts the cross-lagged panel model where total subcortical volume was associated with broadband externalizing problems, and panel C depicts the cross-lagged panel model where global fractional anisotropy was associated with broadband internalizing problems. Numeric values are standardized structural regression coefficients. AR=autoregressive; CBCL=Child Behavior Checklist; CL=cross-lagged; CS=cross-sectional; FA=fractional anisotropy. *p<0.01. **p<0.001.</p>

Design of analyses

FIGURE 3. Cross-Lagged Panel Models Applied to Assess Macro- and Microstructural Brain Changes and Dimensional Psychiatric Symptoms in Children^a

^a Panel A depicts the general modeling strategy used for cross-lagged panel models. Panel B depicts the cross-lagged panel model where total subcortical volume was associated with broadband externalizing problems, and panel C depicts the cross-lagged panel model where global fractional anisotropy was associated with broadband internalizing problems. Numeric values are standardized structural regression coefficients. AR=autoregressive; CBCL=Child Behavior Checklist; CL=cross-lagged; CS=cross-sectional; FA=fractional anisotropy. *p<0.01. **p<0.001.</p> Internalizing problems and the change of connectivity

Externalizing problems and the change of connectivity

Reversed causality: Refrigerator mums, double bind and other myths

A reinterpretation of the direction of effects in studies of socialization.

By Bell, Richard Q.

Psychological Review, Mar 1968, 81-95

STUDIES ARE SUMMARIZED INDICATING THAT THE BASIC MODEL OF SOCIALIZATION, THE ACTION OF A PARENT ON A CHILD, IS TOO LIMITED TO ACCOMMODATE DATA EMERGING FROM RECENT STUDIES OF HUMAN AND ANIMAL SS. A SET OF PROPOSITIONS IS PRESENTED CONCERNING THE EFFECTS OF CONGENITAL FACTORS IN CHILDREN ON PARENT BEHAVIOR. THIS SYSTEM IS APPLIED TO CURRENT FINDINGS IN SEVERAL MAJOR AREAS. CURRENT LITERATURE ON SOCIALIZATION, BASED LARGELY ON CORRELATIONS BETWEEN PARENT AND CHILD BEHAVIOR, CAN BE REINTERPRETED PLAUSIBLY AS INDICATING EFFECTS OF CHILDREN ON PARENTS. A CORRELATION DOES NOT INDICATE DIRECTION OF EFFECT. IT IS FELT THAT THE EFFECT OF CHILDREN ON PARENTS CAN NO LONGER BE DISMISSED AS ONLY A LOGICAL BUT IMPLAUSIBLE ALTERNATIVE EXPLANATION OF A CORRELATION

From child to parent: the associations of child problem behavior with parental psychopathology and family functioning

- The parent-child relation interwoven in cycles of reciprocal causality
- Child-parent effects are less strong than parent-child effects
- \square N = 5536 for externalizing behavior and N = 5518 for internalizing behavior
- the bidirectional associations of child problem behavior with parental psychopathology and family conflict across childhood

Figure 1. Bidirectional associations of parental psychopathology, family conflict and child externalizing problems.

Mother

Note: Cross-lagged structural equation modeling of parental psychopathology, family conflict and child externalizing problems. Numeric values are standardized path regression coefficients averaged from 10 imputed datasets. The models are adjusted for age, ethnicity, education and religion, gestational age at birth, child's sex, child's age, prenatal parental psychopathology and prenatal family conflict reported by mother and father. (RMSEA =0.02; CFI=0.99; TLI=0.92). Unidirectional associations of parental psychopathology and family conflict mother and father reports are not presented in the figure to enhance readability. *p<0.01.

athology, family conflict and child externalizing problems.

Reverse causality or single method bias

Take home message

 Single-informant, single-method, shared method (variance), reporter or information bias is a known yet underestimated problem

- Beware during data collection
- Single reporter data is (largely) not acceptable in developmental science – psychiatry
- The common practice in adult psychiatric research is no excuse

Take home message

 Psychiatric epidemiology is the discipline of <u>reversed causality</u>

• The association is always the other way round and sometimes bi-directional

 We rarely have the data to demonstrate bidirectionality even if we measured exposure and outcome repeatedly (as we would ideally need 3 or more not too stable measures

Prenatal exposures

Maternal risk factors

- Family distress
- Depression
- Smoking and cannabis use
- SSRI use
- Fatty acids
- Thyroid deficiency
- Folate intake
- Vitamin D deficiency
- Organophosphates

Critical periods & Maternal depression

Generation R

Sequences at MRI

Single time point maternal depression and global DTI age 9 years

Time	Model		Global FA	
point	Model	В	95% CI	Ρ
Prenatal	1	-0.28	(-0.46, -0.10)	0.002
(n=2243)	3	-0.07	(-0.27, 0.11)	0.44
Postnatal	1	-0.29	(-0.47, -0.12)	0.001
2m (n=2037)	3	-0.22	(-0.41, -0.04)	0.02
Postnatal	1	-0.16	(-0.41, 0.08)	0.18
3y (n=2183)	3	-0.04	(-0.29, 0.20)	0.74
Postnatal	1	-0.18	(-0.35, -0.01)	0.04
9y (n=2577)	3	-0.07	(-0.25, 0.10)	0.40

Model 1 no covariates.

Model 3 additionally adjusted for child age at scan, child gender, mother age at intake, ethnicity, prenatal maternal education, marriage (partner) status, mother BMI intake, child birth weight, maternal smoking and alcohol intake.

Trajectories of maternal depression

Trajectories of maternal depression and brain connectivity in the child

Model	Group	Global FA			
would	Group	В	95%CI	Ρ	
	No (n=1851)	ref	-	-	
Model 1	Low (n=703)	-0.23	(-0.392 -0.07)	0.005	
Model 1 N	Medium-up (n=37)	0.02	(-0.56, -0.61)	0.946	
	High-down (n=56)	(n=56) - <mark>0.80</mark>	(-1.28, -0.32)	0.001	
	No	Ref	-	-	
Model 2	Low	-0.14	(-0.30, 0.02)	0.097	
would 5	Medium-up	0.21	(-0.37, 0.79)	0.472	
	High-down	-0.53	(-1.01, -0.04)	0.034	

Model 3 additionally adjusted for child age at scan, gender, maternal ethnicity, maternal age, gestational age at birth, maternal education, marital status, family income, child birth weight, maternal smoking and alcohol intake.

□Variable exposure

□ Carry over effects of exposure

Biological periods of rapid development, sensitive window etc.

Thyroid hormone, serotonin, vitamin D, hormones

Causes and consequences of neuromotor development in infants PhD student: Tamara van Batenburg-Eddes

Age-adapted Touwen neurological examination/neuromotor assessment

Senses, reflexes, responses and tonus

The assessment

zafing

Subscale	Position	Item description		Generatio		
			Optimal	Non-optimal	Non-optimal	-
Tone	Supine	Resting posture	Semi-flexed legs; slight abduction at the hips	Legs flat on the surface	Legs stretched	_
		Adductor angle Popliteal angle Ankle angle	> 80° - < 140° 90°-130° > 20° - < 90°	> 140° 130°-180° < 20°	< 80° < 90° > 90°	
		Head preference Opening & closing hands	No Yes	Yes Sometimes closed	Always closed	
		Alternating leg movements	Yes	Decreased	Absent	
		Grasps with one hand	Yes	Decreased	Absent	
		Hyperextension Dyskinesia	No No	Sometimes Sometimes	Yes Yes	
	Supine- to- sit	Traction response	Arms moderately flexed	Arms fully extended, no resistance	Strong resistance, flexion elbows, legs extended	
		Traction response-head control	Active lift of head	Head lag	Exaggerated	Erasmus MC
	Horizontal	Ventral Tone	Normal tone	Low tone	Back and limbs	Czafu

Polygenic risk score for schizophrenia, n=1,174

Non-optimal neuro-motor development

Schizophrenia	OR (95% CI)	Þ	Number of SNPs
P _T < 0.0005	1.14 (1.00; 1.29)	0.05	2,965
P _T < 0.001	1.14 (1.00; 1.29)	0.04	4,148
P _T < 0.005	1.14 (1.01; 1.30)	0.04	9,547
P _T < 0.01	1.14 (1.01; 1.30)	0.03	13,916
P _T < 0.05	1.15 (1.02; 1.30)	0.03	34,947
P _T < 0.1	1.12 (0.99; 1.27)	0.08	52,256
P _T < 0.5	1.12 (0.99; 1.26)	0.08	126,674

Optimal/non-optimal muscle tone at age weeks and development of internalizing symtpoms

Predicted mean sq. root of internalization (Z-Score) by low muscle tone

Generation R

Optimal/non-optimal muscle tone at age weeks and development of externalizing symptoms

Predicted mean Z-score of the sq. root of externalization by low muscle tone

An analysis adjusted for previous visits

B

Infant low muscle tone

Supplementary Figure 2. The associations of low muscle tone and internalizing per each visit, adjusted for internalizing scores at previous visits

An analysis adjusted for previous visits

- ~

Repeated measures analyses

Growth models are rarely used correctly

Little interaction with time/age is modeled

Too much trajectory analyses while behaviour rarely justifies latent class assumption and model rarely improves above continuous analyses

You always find trajectories (think of an exception) and quite often parallel trajectories are found

Erasmus *N*

Thank you !

The children

Erasmus MC University Medical Center Rotterdam

Universiteit Leiden

Fadila Serdarevic Marinus v. IJzendoorn & Marian Bakermans Rene Veenstra