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Abstract

We apply Moulin’s notion of egalitarian equivalent cost sharing of a public good to the problem of
insurance capitalization and capital allocation where the liability portfolio is fixed. We show that this
approach yields overall capitalization and cost allocations that are Pareto efficient, individually rational,
and, unlike other mechanisms, stable in the sense of adhering to cost monotonicity.
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l. Introduction

Mainstream risk capital allocation methods in financial institutions are grounded in the concept of the
marginal cost of risk. Specifically, capital is allocated to each risk in a portfolio based on how much
capital is consumed when that risk is expanded at the margin. Such approaches have obvious merit in
the context of portfolio optimization, where correct pricing of marginal units of exposure is essential.

Other applications of capital allocation, however, may require fundamentally different methods. One
such application is the case where capital must be allocated but the portfolio of risk is fixed. This can
occur in insurance markets when a closed block of insurance business is reinsured, or when a runoff
company is capitalized or recapitalized." In such cases, allocating capital based on how it is consumed
when risk is expanded at the margin is no longer economically relevant. Instead of devising allocation
rules to prices which guarantee that the right amount of risk is taken conditional on capitalization, as
existing methods are designed to do, we must devise rules to guarantee equitable treatment of
participants in the course of choosing optimal capitalization.

Existing methodologies, which allocate the total cost of capital based on how the marginal unit is
consumed, can introduce a wedge between individual and collective interests. In particular, individual
policyholders which are intensive consumers of the marginal capital unit at the social optimum may be
better off with lower levels of capitalization when the total capital cost allocation is being keyed to the
consumption of the marginal unit. This relates closely to the notion of stability in allocations: If
allocations are unstable with respect to small perturbations, then small changes in risk, capitalization, or
in risk measure thresholds can produce large swings in policyholder welfare---which can cause individual
policyholders to disagree on the optimal level of capitalization.

This paper is concerned with the latter problem. Specifically, we study how capital cost sharing rules
can be designed to guarantee Pareto optimal capitalization acceptable to the various policyholders
whose exposures make up the portfolio. We resolve the problem of instability by appealing to the
concept of cost monotonicity used in the economic theory of public goods---where cost sharing rules are
restricted to produce allocations in a way that no agent will object to the introduction of an
improvement to the cost technology.

Background and Motivation

Many capital allocation methods ultimately boil down to the gradient of a risk measure. Examples
include Myers and Read (2001), Denault (2001), Tsanakas and Barnett (2003), Tasche (2004), Kalkbrener
(2005), and Powers (2007).2 Economic justification for the gradient method can be recovered in profit
maximization problems where the risk measure serves to constrain risk taking (e.g., Zanjani, 2002;
Meyers, 2003; Stoughton and Zechner, 2007). In the latter papers, the gradient of the risk measure

A particularly vivid example of a runoff capitalization is provided by Equitas---which is in the process of
discharging the liabilities of multiple Lloyd’s syndicates following the market restructuring of 1993.

? Bauer and Zanjani (2013) provide a review of gradient methods as well as alternative approaches to capital
allocation.



accurately reflects the marginal cost of risk, so allocating capital according to the risk measure gradient
is consistent with marginal cost pricing.

Consistency with marginal cost seems desirable, but it is important to understand that such consistency
does not grant universal application of the allocation method. Merton and Perold (1993) proved that
risk capital allocation would generally fail to provide accurate pricing of inframarginal or supramarginal
changes to a risk portfolio. Hence, allocating capital according to the gradient method can yield
accurate pricing of marginal changes to a risk portfolio, but no more.®> Applications where the risk
portfolio is fixed may require a different approach. Rather than asking how much risk to take, given
fixed capital, sometimes one is confronted with the question of how much capital to hold, given fixed
risk.

The latter problem fits squarely within the public goods literature, and in particular those papers
concerned with cost-sharing mechanisms for providing the optimal amount of the public good. In the
case of the insurance company, the public good is capital. The policyholders of the company are the
consumers, who all enjoy access to the protection afforded by the capital of the firm.

The classic solution to the problem of public good cost sharing is provided by Lindahl (1958), whose
basic idea was to derive “personalized prices” that each consumer could pay for the good. These prices
were based on each consumer’s marginal utility associated with the public good at the optimum. This
idea was subsequently refined and extended by Foley (1970), Kaneko (1977), and Mas-Colell and
Silvestre (1989)---who established, among other things, various conditions to guarantee that the
solution was Pareto optimal and part of the core.

Cost-sharing based on valuation of the marginal unit, however, can lead to unappealing and unstable
outcomes. In particular, one can construct examples (one of which is presented in a later section) where
small changes in the level of public good production yield large changes in the cost allocation. In other
words, while the Lindahl solution yields a Pareto optimal outcome, the mechanics of the cost sharing
can lead some consumers to prefer super-optimal or sub-optimal production levels in cases where a
deviation significantly alters the cost allocation. A similar problem surfaces in the capital allocation
literature. Previous research has recognized the possibility that allocations might not be stable (e.g.,
Myers and Read, 2001; Zanjani, 2010) to small perturbations of the portfolio or capitalization level.

In the context of the general public goods literature, Moulin (1987) introduced an additional restriction
on cost sharing dubbed cost monotonicity aimed at this problem. He argued that a cost sharing
mechanism should satisfy the property that all consumers would benefit from a technological
improvement in the cost function. This additional restriction, in conjunction with some other conditions
on preferences and technology, leads to a unique solution: Specifically, the cost sharing mechanism
ends up adhering to what Moulin dubbed egalitarian equivalent cost sharing of a public good. This

* Although this paper is concerned with an economic approach to capital allocation, it should also be
acknowledged the economic approach---in the sense of taking profit or welfare maximization as the guiding
objective---is by no means the only approach to capital allocation. Examples of optimization approaches with
different objectives can be found in Dhaene, Goovaerts, and Kaas (2003), Laeven and Goovaerts (2004), and
Dhaene, Tsanakas, Valdez, and Vanduffel (2012).



essentially means that each consumer is allocated cost so that her resulting utility matches that which
she would receive at the maximum level of public good production that results in a feasible utility

distribution, if the public good were being given away for free.

We adapt this idea to the context of the capital allocation problem in insurance, showing that the
egalitarian equivalent approach to cost sharing yields stable capital allocations. The capitalization
solution, moreover, is Pareto optimal, and participation in the scheme is individually rational.

The rest of this paper is organized as follows. Section Il sets up the insurance capital allocation problem,
defines the notion of egalitarian equivalent capital allocations, and shows that the resulting allocations
are Pareto optimal, cost monotonic, and individually rational. Section Ill provides a numerical example
demonstrating the stability of the egalitarian equivalent allocations in a situation where traditional
methods yield unstable allocations. Section IV concludes.

Il. Insurance Capitalization and Cost Allocation

We consider a set of N consumers. Each consumer is endowed with w! and exposed to a random loss
variable L!. Each consumer has a contract with the same insurance company promising full
indemnification® in the event of loss. The recovery from the insurance company may turn out to be less
than promised. The company has non-negative assets a which could be less than total claims, so the
consumer’s recovery is:

. ) a .

R' = min |}, =—=——L'
[ Xj=q L ]

The premium paid by the consumer is denoted by pi, and we require premiums to cover costs
associated with capitalizing the firm. Total costs are assumed to consist of actuarial costs plus a
frictional cost c(a), so that in aggregate:
N N

pt = Z ER! + c(a)
=1 i=1

L

i

Consumer utility is determined by von Neumann-Morgenstern expected utility, which we will take to be
continuous with risk aversion:

Eu'(w! — p' — L' + R

The premium paid by the consumer, p?, can be decomposed further into the actuarial loss and an
amount to cover the frictional costs of assets:

* Note that the contracted indemnity here is taken as a given. For analysis of the optimal level of indemnity, see
Zanjani (2010) and Bauer and Zanjani (forthcoming).



p' = ER! + 7!
so that we may write utility as a function of the asset level (the public good) and a cost share
Vi(a,z") = Eu'(w! — L' + R' — ER! — z%)
with the restriction that the cost allocations pay for the (frictional) cost of public good production:
(1) Yiz' = c(a)
where we take the frictional cost function to be increasing and continuous.’

We write the set of feasible allocations as:

Q= {(a,zl, v ZV)la > O,Z.zi = c(a) }

Asset Level Selection and Cost Sharing Mechanisms

A mechanism M assigns to each cost function a level of public good production and a set of cost shares
satisfying (1):

M(c, VL, .., VYY) = (a,,, z}, ..., Z))
We are interested here in two key properties of a mechanism:

1. Pareto optimality — Does the mechanism select a Pareto optimal allocation for every cost
function?

2. Cost Monotonicity — A mechanism satisfies cost monotonicity if, for any two cost functions c;and
¢, we have:

c,(a) <cy,(a) Va=0 = ui(M(cl)) > ui(M(cz)) Vi

These properties are less than typically required in the public good literature on cost sharing (e.g.,
Kaneko, 1977; Mas-Colell and Silvestre, 1989), which usually also requires allocations to be in the “core”
(as described by Foley, 1970) of allocations that can’t be improved upon by coalitions of consumers. The
core concept is natural in cases where the public good is non-rival, but in the insurance case all
consumers are rival claimants on the same assets. Contemplating sub-coalitions of consumers in this
case would thus involve alteration of preferences over the public good, as removal of potential
claimants affects prospective consumption by the remaining consumers. Consistent with our motivating

> We have expressed frictional costs as a function of assets rather than capital, but note that this form is flexible
enough to capture frictional capital costs. For example, consider: c(a) = ¢(a — ER'), where ¢ is a continuous and
increasing function and capital is the difference between assets and expected liabilities (@ — ER?). Notice that
capital is a continuous and increasing function of assets, so that c¢(a) will inherit continuity and monotonicity as
well.



examples, we restrict our attention to the case where consumers cannot leave the company and thus do
not require the allocation to be coalition-proof.

Cost monotonicity was introduced by Moulin (1987), motivated by requiring any cost sharing
mechanism to allocate responsibility in such a manner that “no agent will oppose the implementation of
a technological advance.” As will become clear in the example of the next section, this requirement is
intimately related to the notion of stability in capital allocations: If a mechanism has a tendency to
produce allocations that are unstable with respect to small changes in capitalization, it is not likely to be
cost monotonic.

Egalitarian Equivalent Capital Cost Allocation

Moulin (1987) also introduced egalitarian equivalent cost allocation, an approach he showed to be
consistent with cost monotonicity. His idea was to allocate cost responsibility so that the resulting
distribution of utility would match the distribution associated with the egalitarian equivalent level of
public good production---which he defined as the highest possible level of the public good that, if it were
provided for free to consumers, would yield a feasible utility distribution.

In our case, the egalitarian equivalent level of assets a’ isthe highest level of assets such that, if the
policyholders did not have to pay for the frictional costs associated with those assets, that a feasible
utility distribution would result:

a* =supfa > 013(a,z, ..,z") € Q: V(G 0) < Vi(a,z') Vi € N}

Moreover, given an egalitarian equivalent level of assets a*, we call any feasible allocation (@, Z%, ..., ZV)
satisfying:

Vi(a*,0) <Vi(az') VieN
an egalitarian equivalent allocation.

The following theorems establish existence, individual rationality, Pareto efficiency, and cost
monotonicity of egalitarian equivalent allocations. They are essentially slight modifications of portions
of Moulin’s results, adapted to the problem at hand and in particular sidestepping the issue of the core
property.

Theorem 1 Suppose the loss distributions are bounded and nontrivial and the cost function is strictly
increasing and weakly convex. The egalitarian equivalent level of public good production a” is finite
and any egalitarian-equivalent allocation (a,z*, ..., zZV) satisfies:

Vi(a,0) =Vi(a,z') VieN

Proof: See Appendix.



Note that a consequence of Theorem 1 is that egalitarian equivalent allocations satisfy individual
rationality. The egalitarian equivalent level of assets must be nonnegative, so any egalitarian equivalent
allocation at least weakly dominates the zero allocation which is the relevant one for assessing
individual rationality.

Vi(am, zk) = V1(0,0) Vi
Theorem 2 An egalitarian equivalent allocation is Pareto efficient.
Proof: See Appendix.
Theorem 3 - An egalitarian equivalent mechanism is cost monotonic.

Proof: See Appendix.

lll. A Numerical Example

We now consider a simple example of a company with two consumers, both with exponential utility
functions with coefficients of absolute risk aversion equal to unity and facing binary loss distributions.
Specifically, let w! = L' = 5and w? = L? = 5.2, and suppose further that the probability of loss is 5%,
so that each consumer faces a 5% chance of losing all of her wealth. Finally, suppose that the losses are
perfectly negatively correlated, so that consumer 1 never loses when consumer 2 loses, and vice versa.

We can then express the utility functions for consumers 1 and 2 as:

V1 = —.05exp{—[w! — L' + min(L!,a) — p*]} — .95exp[—-(w! — p1)]
= —.05 exp[— min(5, a) + p'] — .95exp(—5 + p1)
and
V2 = —.05exp{—[w? — L? + min(L?, a) — p?]} — .95exp[—(w? — p?)]

= —.05 exp[-min(5.2, a) + p?] — .95exp(—5.2 + p?),
respectively, where p’ is the premium paid by consumer i and a is the asset level of the company.
We assume that the cost of holding assets is a linear function of the assets held, as in:
c(a) =.011a fora > 0, 0 otherwise
so that premiums follow:
p! = .05 X min(5,a) + z!

p? =.05 x min(5.2,a) + z2



with z! + z% = .011a.
We can then specify the Pareto problem as:
maxg 1 ,2{V* + AV?}
subject to
zl +2%2 = .011a
with A being the relative weight on the second consumer.

The Pareto-optimal level of assets in this case is independent of the Pareto weight and turns out to be
approximately 4.994, with the cost shares depending on the Pareto weights.

Any particular cost allocation method at the optimum can be justified by a particular weighting scheme
(i.e., a particular level of 1). For example, equal shares, in which both consumers pay z! = z? = (%) X
.011 X 4.994, can be justified by setting A equal to approximately 1.2080.

Lowering A to approximately 1.2067, on the other hand, would yield a slightly higher cost allocation

(z% = (55242r5) X .011 X 4.994) to the second consumer---the same result that would be obtained with

allocating costs according to the respective contributions to tail value-at-risk with a threshold
corresponding to the point of default:

E[L*+ L2 | L'+ 1%?>a]
A Lindahlian solution (see Kaneko, 1977), on the other hand, would feature cost shares based on the
value placed by each consumer on the marginal unit of company assets. In other words,
vt
2= —| 9% | x 4994

vt
dzt

which in this case works out to
z1 =.0014
z% =.0536

Our problem of interest concerns the stability of the allocations, and this problem is clearly illustrated by
the latter two approaches---allocation based on the gradient of TVaR, and the Lindahl allocation. Both
approaches in our example are keyed to the default threshold (asset level of 4.994). But a small
increase in the threshold to, say, 5.001, would yield a discontinuous change in implied allocations under
either method. Specifically, the first consumer would no longer receive any capital cost allocation.



Once assets move beyond 5.000, the loss of the first consumer is always paid in full and is thus no longer
connected to company default. Thus, only the loss of the second consumer matters when calculating
TVaR with a threshold of 5.001 instead of 4.994. Similarly, once assets are at 5.001, only the second
consumer benefits from further increases in the asset level, so the Lindahl solution will allocate all cost
to the second consumer when the optimal level of capital is 5.001.

This instability in both the TVaR gradient allocation and the Lindahl allocation flows from the fact that
neither is cost monotonic. To see this, consider a slight modification to the frictional cost function:

(.Olla 0<ac<4994
) 011 X 4.994 4994 < a < 5.001
¢(a) = .008
011 X 4.994 + ST 011 x (a — 5.001) 5.001 < a < 5.002
0lla a > 5.002

This modification essentially makes additional units of assets free between 4.994 and 5.001, and then
catches up to the original cost line by the point of a=5.002. Thus, this change represents a strict
improvement in the cost function. As might be guessed, the Pareto optimal choice under this change
would be to increase assets from 4.994 (the optimum under c(a)) to 5.001, as this yields more
protection at the same frictional cost.

However, the increase in assets will not necessarily be welcomed by both consumers, depending on the
allocation rule being used. Under both the Lindahl and the TVaR gradient allocations (using a default
threshold), consumer 2 will become solely responsible for all frictional costs when assets are increased
from 4.994 to 5.001. For example, under TVaR, consumer 2’s utility drops from:

5.2
—.05 exp {— min(5.2,4.994) + [ 05+ (ﬁ) X .011] X 4.994}

5.2
— .95 exp {—5.2 + [ 05+ (m) X .011] X 4.994}
= —.07366

to

—.05 exp[— min(5.2,5.001) + (. 05 X 5.001 +.011 x 4.994)]
— .95 exp[—5.2 + (.05 X 5.001 +.011 x 4.994)]
= —.07566

This illustrates that an allocation mechanism which assigns cost allocations based on the TVaR gradient
at the default threshold fails cost monotonicity: Even though the transition from c(a) to é(a) involves a
cost improvement, consumer 2 ends up being worse off because of the reallocation of frictional cost. A
similar characterization holds for Lindahl mechanism in this case, although the utility loss for consumer 2
is less dramatic since the cost allocation was already skewed heavily in her direction before the cost
improvement.



An egalitarian equivalent mechanism, on the other hand, guarantees that both consumers will welcome
the improved cost structure when transitioning from c(a) to ¢(a). In this particular example, numerical
methods can be applied to show that the egalitarian equivalent level of assets when operating under the
original cost structure c(a) is 4.1691. The associated egalitarian equivalent cost allocation features
61.39% of the frictional cost responsibility being allocated to consumer 2. In contrast to the jumps
observed with the TVaR and Lindahl mechanisms, the cost allocation changes very little when the cost
structure drops to ¢(a)---with consumer 2 now having responsibility for 61.44% of the frictional cost.
Also in contrast to the results observed under the TVaR and Lindahl mechanisms, consumer 2 is left
slightly better off after the cost drop. The egalitarian equivalent level of assets rises to 4.1696, so utility
is slightly higher for both consumer 1 and consumer 2 in the new regime.

IV. Conclusion

This paper explored egalitarian equivalence as a capital allocation concept, and argued that it is suitable
for situations where the level of capital is variable but the risk portfolio is fixed. In such circumstances,
the capital cost allocation problem is isomorphic with the much-studied economic problem of how to
share the cost of a public good. The egalitarian equivalent allocation approach has the significant
advantage of cost monotonicity, which delivers stability.

However, it must be stressed that this advantage is context-dependent: Egalitarian equivalent allocation
methods are not appropriate for pricing applications where the risk portfolio is not fixed. When the
problem is one of portfolio optimization, marginal cost pricing dictates the use of allocation methods,
such as the Euler method in the case of risk-measure constrained portfolio optimization, even if the
method produces unstable allocations. Indeed, the Euler method is likely to yield unstable allocations
unless one is willing to select the risk measure specifically for stability properties.

Moulin showed that egalitarian equivalent mechanisms are the only ones that can be guaranteed to be
cost monotonic in all situations, but it is possible that other methods might be admissible if further
restrictions are added to nature of the cost functions. Additional restrictions might be worth exploring
because the egalitarian equivalent mechanism may not be intuitive for everyone. Moulin’s terminology
was evidently intended to parallel egalitarian equivalence for private good allocations (Pazner and
Schmeidler, 1978). There are similarities in process: Egalitarian equivalent cost shares are found by
calculating amounts that yield a particular utility distribution, while egalitarian equivalent private good
allocations are found by identifying Pareto optimal allocations that match a particular utility distribution.
However, the relevance of the reference point in the private case (the utility distribution associated with
an economy in which all goods are shared equally) is easily and intuitively grasped, while the relevance
of the corresponding reference point for the public case is less obvious. Future research may uncover
other cost monotonic mechanisms in the context of more restricted settings.
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APPENDIX

Proof of Theorem 1 (Moulin (1987))
Prove finiteness of a*:
Risk aversion and non-trivial loss distributions implies that
Vi(a,0) >Vi0,0) Via>0
We take an increasing sequence @; such that
limi, o d; = a” (A1)
By way of contradiction, suppose

limi,, d; =a* = oo (A.2)

By definition of a*, we know there is an associated sequence of feasible allocations (a;, z}, ..., zlY)
satisfying:

Vi@, 0) <Vi(ayzi) Vi (A.3)

(which exist by definition of a*). Suppose this sequence a; is also unbounded. Then we can find a
subsequence, denoted a;, that converges to infinity.

Denote the upper bounds of the loss distributions by L;. An intermediate value argument, which we can
apply due to the observation that Vi(a;, 0) = V¥(0,0) = Vi(a,, L;) Vi and the continuity of the utility
functions, imply that for each i there exists a function z;(.) satisfying:

Vi(ay, ) = Vi(@, 0) = Vi(0,0) = Vi(as, z(ar)) Vit (A.4)

Because the loss distributions are bounded, assets have no value beyond a certain point, so z;(.) is
bounded from above, so (A.4) implies that zé must be bounded from above as well.

It follows that

z
limsup{— <0 Vi

t—>oo at

and moreover that

Z'i
lim sup {Z, t} <0
t—oo a;

However, notice that feasibility and the convexity of the cost function implies that:



{C(fit)} S0

. A
lim sup {——¢ =lim sup B
t

t—oo a; t>o
which contradicts the previous result. Thus the sequence a; must be bounded, meaning that

lima, =q <o

t—>o

By assumption of unboundedness, d; > q for large enough t, so (A.3) then implies that Z,f < Oforalli,
which violates feasibility, a contradiction indicating that a* < oo,

Prove Vi(a*,0) = Vi(c_l,z_i) Vi € N:
First, we prove that a feasible allocation (a, z, ..., z") satisfies
Vi(a*,O) < Vi(a,zi) Vi  (A.5)
We take a bounded increasing sequence @, such that
limi,,d; = a* < oo

associated sequence of feasible allocations (ag, Z}, ...,zé\’) satisfying (A.3). We know from the previous
step that all elements of this sequence are bounded, so the associated sequence must have a
convergent subsequence. Define  c Q as:

Q= {(a,zl, . zZV) | Q x ZZi >q> 0,2.21' = c(a), z!
7 L
€ [ —Q x max{L}, ...,LN},Q x max{L!, ...,IN}] Vi

where Q is any number greater than 1. Notice that (a;, z3, ..., z)) € Q. Vt, since &, = 0 and any
feasible allocation lying outside 0 would involve a violation of (A.3). Moreover, since Q is closed, any
convergent subsequence of (a;, Z}, e) Z?’) converges to a limit point of {, so (A.5) is satisfied.

Given a* > 0, note that egalitarian equivalence implies that z' & {—Q x max{L', ...,I"},Q X
max{L}, ..., IN}} for all i. To see why, consider the case where z' = Q x max{L, ..., L"} for some i.
Then it follows that:

Vi(a*,0) = Vi(0,0) = Eu'(w! — L) > Vi(a,z")

which is inconsistent with egalitarian equivalence. Now suppose that for some i, z! = —Q X
max{L}, ...,LN}. Note that, since @ = 0, this implies there must be at least one j # i such that
7/ > max{L', ...,["}. But then

Vi(a*,0) = V/(0,0) = Eu/(w/ — LV) > V/(a, /)



which is inconsistent with egalitarian equivalence. Thus it follows that z¢ will always lie in the interior of
{—Q x max{L!, ..., LN}, Q x max{L!, ..., LN}}.

Moving on, by way of contradiction, suppose that Vi(a*,0) = Vi(C_l, z'i) is not satisfied Vi € N. This
implies that there exists some nonempty subset of N (which we will denote by M) such that:

Vk(a*,0) <V*(a,z*) vkeM

Note that M cannot be equivalent to N (i.e., Vi(a*,0) = Vi(C_l, z_i) must hold for some i), as this would
contradict the egalitarian equivalence of a* since we could increase a* by some amount if
Vk(a*,0) < Vk(C_l, Z_k) Vk € N. So we consider a complementary set L = N /M with

Vi(a*,0)=Vi(az)VvjeL

But this is also incompatible with the egalitarian equivalence of a* since, given that all cost shares are
interior to the choice set, we could form a new feasible allocation, (@, 21, ..., 2), where @ = @ and we
have subtracted some small amount from each of cost shares of all agents in L and divided the sum total
of those deductions among the agents in M so that:

Vk(as,0) <Vk(a,z¥) vkeN

This contradiction implies that Vi(a*,0) = Vi(d, z_i) must be satisfied for all i.

Proof of Theorem 2

Proof: Denote an egalitarian equivalent allocation as (@, 2%, ..., 2V) and the associated egalitarian
equivalent level of public good production as a*. Suppose it is not Pareto efficient. Then there exists a
feasible alternative allocation (@, z1, ..., V) satisfying:

Vi(a*,0) =Vi(a,z2') <Vi(az') VieN

with strict equality for at least one of the /’s. Let k index one of the agents for whom the inequality is
strict. Then there exists some € > 0 such that

vk(a,z¥) < vk(a,z* + £) < V*(a,z¥)

Let

Note that



(a,7%,..,2N) e
But since utility is strictly decreasing in the second argument
Vi(a',0) =Vi(a,2') <Vi(az) VieN

which is inconsistent with a* being the egalitarian equivalent level of public good production.

Proof of Theorem 3

Suppose not. Then there exist two cost functions c;(.) and c;(.), with ¢; < c,, but where the associated
egalitarian equivalent levels of assets, a} and a, satisfy aj < a}. Let (ay,z3, ..., z)') be an egalitarian
equivalent allocation assigned by the mechanism under c,(.) and (a4, z1, ...,Z{V) an egalitarian
equivalent allocation assigned under c;(.). Note that:

( 1 cz(az) — c1(az) N cx(ay) — Cl(az)>
a,, —

Z5 N ) e Z N

is a feasible allocation under c;(.). Egalitarian equivalence, together with c; < c,, implies that

‘ [ i i . cp(ap) —cq(a
Vl(a;,o) =Vl(a2:zé) SVL (az,Zé— 2( Z)N 1( 2)

) VieN
But egalitarian equivalence, together with aj < a3, implies that

Vi(a3,0) > Vi(a;,0) =Vi(ay,z) VieN
Putting these together yields

Vi(ayzi) = Vi(a;, 0) < Vi (a2 — 292)) i e N

which contradicts the supposition that aj is egalitarian equivalent under ¢, (. ).



