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Variable annuities (VAs)

• unit linked-type vehicles

B popular in North-America, & Asia since new century

B complicated structure due to the presence of several riders (≡
options)

B VAs jargon: GMxB = Guaranteed Minimum Benefit of type x; x =

A(ccumulation), = D(eath), = I(ncome); = W(ithdrawal)

B GLWB = Guaranteed Lifelong Withdrawal Benefit

• need realistic models for pricing & risk management purposes  
policyholder behaviour is crucial

B practitioners frequently relies on intuitive but simple rules  risk of

underestimation / mismanagement
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Guaranteed Lifelong Withdrawal Benefits

• GLWBs features

B single initial investment; accumulation phase followed by

(guaranteed) decumulation phase

B benefits: annuity payments after contract is initiated, personal

account (if any) at death

B personal account: same as in a unit-linked

↑↓ reference fund returns,

↓ (insurance and management) fees,

↓ annuity payments,

ruin?

B base amount: used to calculate annuity instalments

↑ bonus rate during accumulation phase,

↑ reset by personal account (ratchet),

↓ excessive withdrawals

B withdrawals initiation: complex decision driven by moneyness and /

or other factors
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Guaranteed Lifelong Withdrawal Benefits

• Wide literature on pricing and risk management of VAs using

B closed form (few cases, GMDB)

B MC (all GMxB but GMWBs)

B trees, dynamic programming

• some references on GLWBs:

B [Shah and Bertsimas (2008)]

B [Piscopo (2009)]

B [Kling et al. (2011)]

B [Piscopo and Haberman (2011)]

B [Steinorth and Mitchell (2012)]

few focuses on the optimal initiation decision. . .
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Optimal Initiation

• [Huang et al. (2014)] using PDEs, solve for (portfolio) value and

analyse initiation decision based on moneyness

• [Huang et al. (2017)] solve using dynamic programming combined

with Fourier analysis to approximate the value function, assuming

full dynamic withdrawals and initiation

• both can hardly be generalized to high dimensional models

“. . .Monte Carlo (MC) methods could therefore in principle be used to

calculate [the fair value] v0, except that the optimization over [the

initiation time] τ is hard to implement using simulation.”

[Huang, Milevsky and Salisbury (2014)]

Is it really hard?
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Our contribution

• we show how (LS)MC can be used to calculate the initiation
option  non standard as the initiation decision will generate a

stream of random cash flows

B ratchet

B remaining fund value in case of death

• extend to allow for surrender (usually admitted as total

withdrawal); distinguish between

B early surrender

B full surrender

 (double) optimal stopping problem  transform into a two-stage

problem

• advantage: can easily accommodate complicate models and contract

features

• preliminary results: early surrender valuable; full surrender less so if

contract can be optimally initiated
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Optimal annuitization

• Wide literature on optimal (timing of) annuitization in pension /

insurance products

B [Yaari (1965)]

B [Milevsky (1998)]

B [Milevsky et al. (2006)]

B [Milevsky and Young (2007)]

B Di Giacinto and Vigna (2012)]

B [Gerrard et al. (2012)]

B [Hainaut and Deelstra (2014)]

• GLWB differ because

B maintain access to the fund

B surrender

B random cash-flows after annuitization (initiation)

B fair valuation vs max utility
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Framework

• time grid: T = {0, 1, . . . , N}
(eg N = extremal age − ph’s initial age)

• ph’s stopping times in T:

B ph’s time of death: τ

B initiation time: λ, 0 ≤ λ ≤ τ
B surrender time: π, 1 ≤ π ≤ τ

• constraints on (λ, π):

B λ < π ≤ τ (initiation and eventual surrender)

B π < λ = τ (early surrender, no initiation)

B λ = π = τ (no initiation or surrender)

B convention: λ = τ or π = τ  no action is taken
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Framework

• all processes defined on (or restricted to) T = {0, 1, . . . , N}
B reference fund value: St

B personal account: Xt

B base amount (determines annuity payments): Mt

B state variables (other than Xt and Mt),

Zt = (Xt,Mt, Ẑt), Ẑt = (other state variables)

eg Ẑt = (rt, µt, Vt, . . .), with rt short rate, µt stochastic mortality,

Vt stochastic volatility, . . .

B discount factor Bt,u = exp
(
−
∫ u

t
rvdv

)
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Framework

• Two distinctive features: roll-up (until initiation) and ratchet of

base amount

• personal account and base amount dynamics given (λ, π):

Xt+1 = max

{
Xt

(
St+1

St
− ψ

)
− (φ+ gλ1{λ<t})Mt, 0

}
1{π>t}

Mt+1 = max{Mt(1 + β1{λ≥t}), Xt+1}1{π>t}

with X0 =M0 = 100

B management fee: ψ

B insurance fee: φ

B roll-up rate: β

B annuity rate if rider is initiated at t: gt
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Personal and base account
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Valuation problem

• valuation (risk neutral) measure: Q

• fair value of GLWB:

V0 = sup
λ,π

EQ [pv of cashflows generated by GLWB contract]

over all possible initiation-surrender strategies (λ, π) available to ph

 (double) optimal stopping problem:

B λ < π ≤ τ (initiation and eventual surrender), or

B π < λ = τ (early surrender, no initiation) , or

B λ = π = τ (no initiation or surrender)

convention: λ = τ or π = τ  no action is taken

• here focus on initiation and surrender (no dynamic withdrawals!)

• two special cases: initiation or early surrender (V ′0), initiation, no

surrender (V ′′0 ). Clearly

V ′′0 ≤ V ′0 ≤ V0
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Least Square Monte Carlo

• combine MC with regression to calculate conditional expectations  

compute continuation values  solve dynamic programming

problems

• if

B e = (e1, . . . , ek)
′ is a (truncated) L2 basis function,

B Yt = pv at t of future cash flows if a given action is taken,

B Zt state variables at t,

then

EQt [Yt] = EQ[Yt|Zt] ≈ δ · e(Zt)

• estimate δ using simulated values Y
(h)
t , Z

(h)
t : δ̃ solves

argmin
δ∈Rk

∑
h

(
Y

(h)
t − δ · e(Z(h)

t )
)2
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Least Square Monte Carlo . . .

• early exercise

B American options: [Carriére (1996)], [Tsitsiklis and Van Roy (1999)],

[Longstaff and Schwarz (2001)], . . .

B surrender option in life insurance contracts: [Andreatta and Corradin

(2003)], [Bacinello et al. (2010)], in VAs [Bacinello et al. (2011)],

. . .

• Solvency II, calculation of NAV

B [Bauer et al. (2012)], [Floryszczak et al. (2016)], . . .

• theoretical results, convergence, number of simulations vs number of

basis functions

B [Clément et al. (2002)], [Moreno and Navas (2003)], [Stentoft

(2004, 2012)], . . .

MC valuation of the initiation option in a GLWB VA 14



LSMC algorithm

• Calculate V ′0 and V ′′0 by LSMC  recalculate at each date the pv of

future cash flows implied by

B (early) surrender

B initiation

B continuation

compare and decide, then continue backward

• recalculation of future cash flows can be efficiently coded

• the case of initiation and late surrender is more complicate
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Initiation with surrender

• recall the fair value of GLWB:

V0 = sup
λ,π

EQ [pv of cashflows generated by GLWB contract]

Proposition

Calculate V0 through a two-stage problem:

[1st stage problem] For each initiation date t, find the optimal (late)

surrender

F I∗t = sup
η
EQλ [pv of cashflows of contract initiated at t, surrendered at η]

[2nd stage problem] Calculate V0 by

V0 = sup
λ,π

EQ[pv of cashflows of contract optimally (late) surrendered]

(π: early surrender)
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Initiation with surrender . . .

• 2nd stage is the same as the “initiation or early surrender”  solve

it with same algorithm

• 1st stage problem can be solved through repeated applications of

LSMC  calculate F I∗t at each time t  time consuming

• however, the same set of simulated state variables is used for all

LSMC calculations in 1st and 2nd stages  only recalculation of

personal account and base amount is needed
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Numerical example

• parameters and model close to [Huang et al. (2014)]

• St: GBM, r = 3%, σ = 20%

• τ : Gompertz force of mortality, ph’s age = 60

µt =
1

b
e(x0+t−m)/b

m = 87.25, b = 9.5

• β = 6%, g(t) = g = 4%, ψ = 0, φ = 150 bp

• surrender rate p(t) = p = 2%

• LSMC: 10 batches of 10 000 simulations, basis functions: 3rd degree

polynomial in 2 variables
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Contract values

• F I0,τ - contract initiated at 0

• F I∗0 - contract initiated at 0 optimally surrendered

• V ′′0 - contract optimally initiated (no surrender)

• V ′0 - contract optimally initiated or early surrendered

• V0 - contract optimally initiated and / or surrendered
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Contract values: roll-up rate

β F I0,τ F I∗0 V ′′0 V ′0 V0

2.0% 97.11 99.75 97.11 98.17 99.75

4.0% 97.11 99.77 97.11 98.78 99.78

6.0% 97.11 99.83 97.72 100.85 100.90

8.0% 97.11 99.82 104.19 106.63 106.61

10.0% 97.11 99.89 119.66 120.79 120.87
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Contract values: insurance fee

φ (bp) F I0,τ F I∗0 V ′′0 V ′0 V0

50 106.44 106.57 109.68 110.39 110.16

100 101.36 102.70 102.88 104.42 104.63

150 97.11 99.83 97.72 100.85 100.90

200 93.54 98.12 93.68 98.60 98.66

250 90.52 97.24 90.52 97.33 97.41
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Contract values: annuity rate

g F I0,τ F I∗0 V ′′0 V ′0 V0

3.0% 84.98 96.46 84.98 96.39 96.49

3.5% 90.72 97.15 90.78 97.37 97.38

4.0% 96.86 99.50 97.43 100.43 100.55

5.5% 103.11 104.20 104.62 106.06 105.90

5.0% 109.96 110.42 112.21 112.76 112.77

MC valuation of the initiation option in a GLWB VA 22



Conclusions

• fair valuation of optimal initiation in GLWB using Monte Carlo

methods is feasible

B slow but flexible  parallel computing, memory issues?

B good with many state variables

B include surrender before (and after!) initiation

• extensions:

B effects of stochastic mortality, stochastic volatility and interest rates

B reversionary annuities

B age-increasing annuity rates and other realistic contract features
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