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Fertility
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Mortality Improvement at age 70 (HMD)
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Effect of Ageing
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Measure for Mortality

mc(t, x), the age-specific crude death rate at age x , year t, More
specifically

mc(t, x) =
Number of deaths during calendar year t, age x last birthday

Average population during calendar year t aged x last birthday
.

m(t, x), the underlying death rate, which is equal to the expected
deaths divided by the exposure. More specifically

m(t, x) =
D(t, x)

E (t, x)

q(t, x), the mortality rate, which is the probability that an individual
aged exactly x at exact time t will die between t and t + 1.

µ(t, x), the force of mortality.
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Why analyse small population

Experiencing faster mortality improvement, lower interest rate, more
pressure on pension funds.

Most pension schemes are less than 1% of national population.

Significantly more variability exhibited for mortality rates of small
population

Stochastic models might poorly fit small populations

Motivation
For small population:

Greater sampling variation of deaths causes increased uncertainty of
parameter estimates and high levels of uncertainty on projected
mortality rates.

Diverge between future realized rates and projections, future
sampling variation, uncertain projection.
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Stochastic Model and Data

Stochastic Model:

D(t, x)|θ1 ∼ Pois(m(θ1, t, x)E (t, x))

m(θ1, t, x) = − log(1− q(θ1, t, x))

logit q(θ1, t, x) = κ
(1)
t + κ

(2)
t (x − x̄) + κ

(3)
t ((x − x̄)2 − σ̂2

x) + γ
(4)
t−x

Data: Benchmark exposure E0(t, x) and corresponding deaths count
D0(t, x) of the males in England and Wales (EW) in the HMD
database, during year 1961 to 2011, aged 50-89 last birthday.

Simulation Method (Chen, Cairns and Kleinow 2017)

Estimate θ1 for benchmark population, denoted as θ̂1,0
Construct small population Ew (t, x) = wE0(t, x) for
w = 1, 0.1, 0.01, 0.001,
(Re-) Simulate Dw (t, x)|θ̂1,0 ∼ Pois(m(θ̂1,0, t, x)wE0(t, x))
Estimate θ1 for Dw (t, x), denoted as θ̂w1 .
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Two-Stage and Bayesian Approaches

Two-stage approach leads to biased estimates of volatility for small
populations

- Large sampling variation affects latent parameter estimation, with
significant noise obscuring the true signal (Cairns et al. 2011)

- Result in non-negligible bias to the parameter estimation of the
projecting model (Chen, Cairns and Kleinow 2017)

- Over-fit the short cohorts (Cairns et al. 2009)
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V̂ ε
w

(1, 1) given θ̂
w

1 verse V̂ ε
EW

(1, 1), w = 0.01
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Projected Mortality Rate
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Two-Stage and Bayesian Approaches

Two-stage approach leads to biased estimates of volatility for small
populations

- Large sampling variation affects latent parameter estimation, with
significant noise obscuring the true signal (Cairns et al. 2011)

- Result in non-negligible bias to the parameter estimation of the
projecting model (Chen, Cairns and Kleinow 2016)

- Over-fit the short cohorts (Cairns et al. 2009)

Bayesian approach offers a way to avoid or reduce this bias by:

- Combining the Poisson likelihood with the projecting time series
models

- The estimated latent parameters are restricted to be more like
proposed time series models when projecting models dominate while
modelling small populations.

- Using more informative prior distribution with the knowledge of the
larger benchmark population.

- Better estimation for short cohorts.
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Prior Distributions

(κ
(1)
t1 , κ

(2)
t1 , κ

(3)
t1 ) ∝ 1,

κt = κt−1 + µ + εt for t ≤ t2,

µ = (µ1, µ2, µ) ∝ 1,
εt ∼ MVN(0,V ε), i.i.d there dimensional multi-variate normal
distribution independent of t,

V ε ∼ InverseWishart(ν,Σ)

- MCMC-Mean: Fix the mean of the prior to V̂ ε
EW

- MCMC-Mode: Fix the mode of the prior to V̂ ε
EW

γ
(4)
c = αγγ

(4)
c−1 + εc for c > t1 − xna ,

- i.i.d εc ∼ N(0, σ2
γ),

- αγ ∝ (1− α2
γ)g for |αγ | < 1,

- σ2
γ ∼ Inverse Gamma (aγ , bγ)

γ
(4)
c1 ∼ N(0,

σ2
γ

1−α2
γ

)

Dr L Chen, Prof Andrew Cairns, Dr Torsten Kleinow A Bayesian Model for Small Population 12 / 25



,

Results: γ MCMC
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Results: αγ MCMC
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Results κ(1)
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Results: V ε(1, 1) MCMC
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Results: µ(1, 1) MCMC
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Longevity Risk of A Temporary Annuity

i = 4% i = 2% i = 0%
Mean LR (%) Mean LR (%) Mean LR (%)

EW-MCMC 12.2631 5.27 14.8394 6.28 18.3365 7.47
w -MCMC 12.1220 5.72 14.6420 6.76 18.0556 7.95
EW-MLE 12.2166 4.24 14.7720 5.04 18.2371 5.98
w -MLE 12.2052 5.12 14.7441 6.08 18.1805 7.09

i =4% i =2% i = 0%
Mean LR (%) Mean LR (%) Mean LR (%)

EW-MCMC 8.2744 7.02 12.2519 8.14 18.6117 9.45
w -MCMC 7.9292 8.23 11.6832 9.45 17.6509 10.87
EW-MLE 8.1928 5.50 12.1150 6.35 18.3759 7.32
w -MLE 8.2539 7.57 12.2039 8.80 18.5059 10.17
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Sensitivity Test: αγ MCMC
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Sensitivity Test: V ε(1, 1) MCMC
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Sensitivity Test: µ1 MCMC
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Sensitivity Test: m(t, x) MCMC
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Summary

We have demonstrated to the users of the stochastic mortality
models how the information of a larger population could be
embedded for parameter estimation and forecasts by a Bayesian
model.

Studied to what extent the parameter estimation could be improved
compared with the two-stage approach and the financial implication.

The users should be informed how the importance of the prior
information takes over the parameter estimation of a much smaller
population and in what way the sampling variation affects the
parameter estimation and mortality forecasts.
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To summarize part of our findings:

We find that our Bayesian model and methodology of using the
information of large referencing population provide an improved
estimation for the volatility of small population.

The (central) projections of small populations are not ”significantly”
different from the ”true” projections (of the larger reference
population).

When the population is small, the prior distributions, in particular the
time series prior for the latent parameters, dominate the likelihood.
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Thank You!

Questions?

Dr L Chen, Prof Andrew Cairns, Dr Torsten Kleinow A Bayesian Model for Small Population 25 / 25


