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tality Improvement at age 70 (HMD)
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Effect of Ageing
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Measure for Mortality

e mc(t, x), the age-specific crude death rate at age x, year t, More
specifically

Number of deaths during calendar year t, age x last birthday
Average population during calendar year t aged x last birthday

me(t,x) =

e m(t, x), the underlying death rate, which is equal to the expected
deaths divided by the exposure. More specifically

m(t,x) =

E(t.)

e ¢(t,x), the mortality rate, which is the probability that an individual
aged exactly x at exact time t will die between t and t + 1.

o 4(t,x), the force of mortality.
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Why analyse small population

@ Experiencing faster mortality improvement, lower interest rate, more
pressure on pension funds.

@ Most pension schemes are less than 1% of national population.

o Significantly more variability exhibited for mortality rates of small
population
@ Stochastic models might poorly fit small populations
Motivation
For small population:

@ Greater sampling variation of deaths causes increased uncertainty of
parameter estimates and high levels of uncertainty on projected
mortality rates.

o Diverge between future realized rates and projections, future
sampling variation, uncertain projection.
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Stochastic Model and Data

@ Stochastic Model:

D(t,x)|01 ~ Pois(m(61,t,x)E(t,x))
m(6y,t,x) = —log(l— q(b1,t,x))
logit q(61,t,x) = rt? + £ (x = %) + kP ((x = 2)? - 82) + 72,

o Data: Benchmark exposure Ey(t, x) and corresponding deaths count
Do(t, x) of the males in England and Wales (EW) in the HMD
database, during year 1961 to 2011, aged 50-89 last birthday.

o Simulation Method (Chen, Cairns and Kleinow 2017)
o Estimate 0; for benchmark population, denoted as 671,0
o Construct small population E,(t,x) = wE(t, x) for
w =1,0.1,0.01,0.001,
o (Re-) Simulate Dy (t, x)|01,0 ~ Pois(m(f1 0, t, x)wEo(t, x))
o Estimate 6; for D,,(t,x), denoted as .
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o-Stage and Bayesian Approaches

@ Two-stage approach leads to biased estimates of volatility for small
populations
- Large sampling variation affects latent parameter estimation, with
significant noise obscuring the true signal (Cairns et al. 2011)
- Result in non-negligible bias to the parameter estimation of the
projecting model (Chen, Cairns and Kleinow 2017)
- Over-fit the short cohorts (Cairns et al. 2009)
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Projected
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wo-Stage and Bayesian Approaches

@ Two-stage approach leads to biased estimates of volatility for small
populations
- Large sampling variation affects latent parameter estimation, with
significant noise obscuring the true signal (Cairns et al. 2011)
- Result in non-negligible bias to the parameter estimation of the
projecting model (Chen, Cairns and Kleinow 2016)
- Over-fit the short cohorts (Cairns et al. 2009)

o Bayesian approach offers a way to avoid or reduce this bias by:

- Combining the Poisson likelihood with the projecting time series
models

- The estimated latent parameters are restricted to be more like
proposed time series models when projecting models dominate while
modelling small populations.

- Using more informative prior distribution with the knowledge of the
larger benchmark population.

- Better estimation for short cohorts.
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Prior Distributions
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o V. ~ InverseWishart(v, X)

- MCMC-Mean: Fix the mean of the prior to VEEW
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Results: a, MCMC
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esults: V(1,1) MCMC
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Results: p(1,1) MCMC
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Longevity Risk of A Temporary Annuity

i= 4% i= 2% i= 0%
Mean LR (%) Mean LR (%) Mean LR (%)
EW-MCMC | 12.2631 5.27 14.8394 6.28 18.3365  7.47
w-MCMC 12,1220 5.72 14.6420 6.76 18.0556 7.95
EW-MLE 12.2166 4.24 147720 5.04 18.2371 5.98
w-MLE 12,2052 5.12 14.7441 6.08 18.1805 7.09

i =4% i =2% i=0%

Mean LR (%) | Mean LR (%) | Mean LR (%)
EW-MCMC | 8.2744 7.02 | 12.2519 8.14 | 18.6117 9.45
w-MCMC 7.9292 8.23 | 11.6832 9.45 | 17.6509 10.87
EW-MLE 8.1928 5.50 | 12.1150 6.35 | 18.3759 7.32
w-MLE 8.2539 7.57 | 12.2039 8.80 | 18.5059 10.17
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Sensitivity Test: a., MCMC
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Sensitivity Test: V¢(1,1) MCMC
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Sensitivity Test: pu; MCMC
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Sensitivity Test: m(t,x) MCMC
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@ We have demonstrated to the users of the stochastic mortality
models how the information of a larger population could be
embedded for parameter estimation and forecasts by a Bayesian
model.

@ Studied to what extent the parameter estimation could be improved
compared with the two-stage approach and the financial implication.

@ The users should be informed how the importance of the prior
information takes over the parameter estimation of a much smaller
population and in what way the sampling variation affects the
parameter estimation and mortality forecasts.
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To summarize part of our findings:

o We find that our Bayesian model and methodology of using the
information of large referencing population provide an improved
estimation for the volatility of small population.

@ The (central) projections of small populations are not "significantly”
different from the "true” projections (of the larger reference
population).

@ When the population is small, the prior distributions, in particular the
time series prior for the latent parameters, dominate the likelihood.
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