A Tale of Two Pension Plans: Measuring Pension Plan Risk from an Economic Capital Perspective

Aniketh Pittea

University of Kent

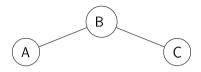
ATRC Liverpool June 28, 2019

- Motivation
- Overview
- Assumptions and Methodology
- UK's Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Summary

- Number of concerns regarding DB schemes across countries:
 - concerns of diminished asset returns
 - increasing longevity of pensioners
 - retirement of the baby boomers
- No widely accepted framework for DB pension schemes which is comparable to Solvency 2 for insurance companies or Basel 3 for banks.
- We propose a flexible and tractable approach to quantify the risks of DB pension schemes.

- Motivation
- Overview
- Assumptions and Methodology
- UK's Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Summary

Methodology


- Select a representative pension plan
 - Universities Superannuation Scheme (UK) 2014 Actuarial Valuation
 - Stylized US pension plan
- Select an economic model
 - Graphical Model [see Oberoi, et al. (2019)]
- Select a mortality model
 - M7 from Cairns, et al. (2007)
- Quantify pension risk [see Porteous, et al. (2012)]

- Motivation
- Overview
- Assumptions and Methodology
- UK's Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Summary

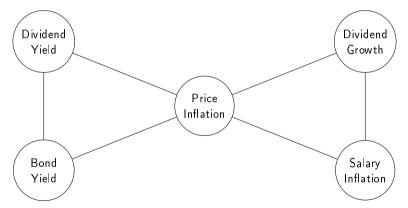
Graphical Model - Background

- Graphical models are probabilistic models for which a graph expresses the conditional dependence structure between random variables.
- We use graphical models to simulate economic variables over long time horizons.
- The approach we use is:
 - transparent
 - flexible
 - easy to implement

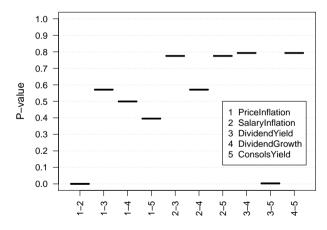
Methodology - forecasting

- Assume 3 economic variables A,B and C.
- The individual economic random variables, Z_{it}s, are modelled as:

$$Z_{it} = \mu_i + Y_{it}$$
, where $Y_{it} = \beta_i Y_{i(t-1)} + \varepsilon_{it}$ and $\varepsilon_{it} \sim N(0, \sigma_i^2)$.

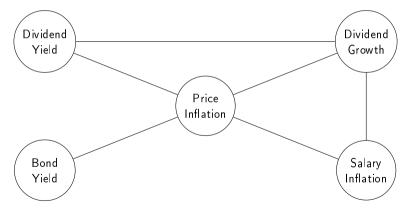

- Correlation of the error terms is represented by a graphical model.
- The error terms:
 - are assumed to be independently distributed across time t;
 - which are directly connected to each other are dependent;
 - which are indirectly connected are still dependent, but more weakly so.

Methodology - selecting a correlation structure


- We use simultaneous p-values to select a graphical structure.
- Hojsgaard et al. (2012). provide guidance on the use of packages written in R to estimate graphical models.
- We use the following UK and US economic time series data:
 - Price Inflation
 - Salary Inflation
 - Dividend Yield
 - Dividend Growth
 - Bond Yield

Economic Model – Graphical Model for UK

Model UK: Graphical model with 6 edges.


Corresponding P-Values

Edge

Economic Model – Graphical Model for US

Model US: Graphical model with 6 edges.

Joint distribution (1)

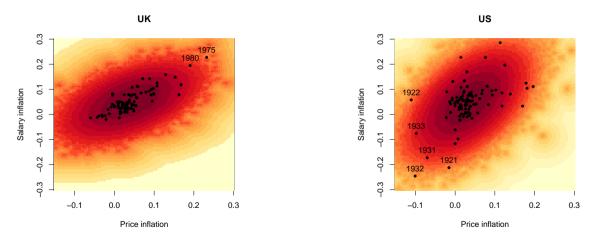


Figure: Plots of simulated price and salary inflation for UK and US.

Joint distribution (2)

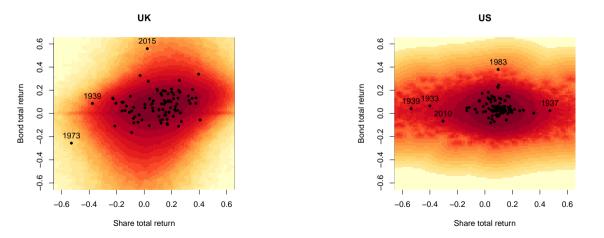
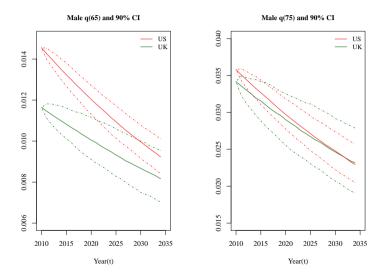


Figure: Plots of simulated share and bond returns for UK and US.


Mortality Model – M7 from Cairns, et al. (2007)

logit
$$q(t,x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x-\bar{x}) + \kappa_t^{(3)}((x-\bar{x})^2 - \hat{\sigma}_x^2) + \gamma_{t-x}^{(4)}$$

- Model assumes a functional relationship between ages (and hence smoothness).
- One of the better fit models to UK and US data (Cairns et al. (2007)).

Mortality Model

Mortality Model – M7 from Cairns, et al. (2007)

Economic Capital Approach

- We analyse the present value of future profits (PVFP) which is the present value of surpluses or deficits.
- The PVFP, V_0 , can be expressed as follows:

$$V_0 = A_0 - \sum_{t=0}^T X_t D_{(0,t)}$$

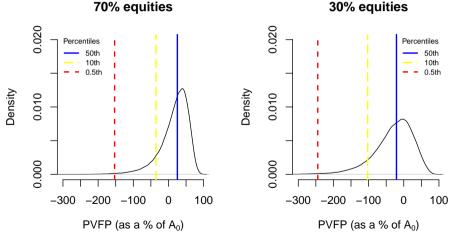
• We carry many simulations (say 10,000 times) to obtain a distribution of V_0 . The required economic capital is the 0.5th percentile of the V_0 distribution

- Motivation
- Overview
- Assumptions and Methodology
- UK's Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Summary

USS Pension Scheme – Benefits

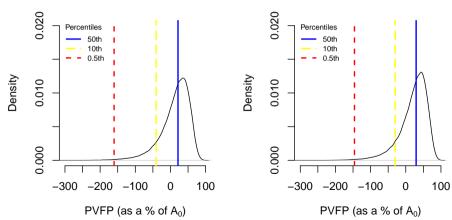
- 1/80th final salary benefit for service to April 1, 2016
- 1/75th career revalued benefit for service from April 1, 2016
- Lump sum at retirement = $3 \times \text{annual pension}$
- Pension increases based on min [CPI, 5%]
- Contribution rate: 24% of salary (8% employee + 16% employer)

USS Pension Scheme – Data


Number	167,545
Average pensionable salary	£42,729
Average age	43.8
Average past service	12.5
Number	110,430
Average deferred pension	£2,373
Average age	45.1
Number	70,380
Average pension	$\pounds 17,079$
Average Age	71.1
	Average past service Number Average deferred pension Average age Number Average pension

USS Pension Scheme – Assets

Assets	Benchmark Allocation
UK equities	16%
Overseas equities	31
Alternative assets	19
Property	7
Total real	73%
Fixed interest	27
Cash	0
Total fixed	27%
Note: Modelled as 70% Equities and 30% Bonds	

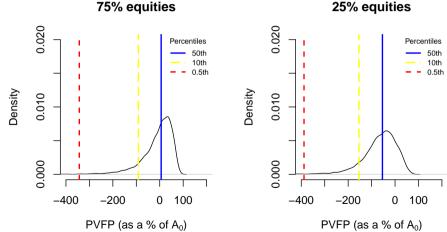

Note: Modelled as 70% Equities and 30% Bonds

USS Economic Capital – Sensitivity to Asset Allocation Strategy

30% equities

USS Economic Capital – Sensitivity to Contribution Rates

Contribution rate – 20%


Contribution rate – 25%

- Motivation
- Overview
- Assumptions and Methodology
- UK's Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Summary

Sylized US Pension Plan - Benefits

- Benefits based on USS pension scheme, except for the following
- 1.5% final average salary for all pension service
- No lump sum payment on retirement
- No pension increases
- Contribution rate: 10.8% of salary

US Stylized Plan Economic Capital – Sensitivity to Asset Allocation Strategy

25% equities

Contribution rate – 13.3%

US Stylized Plan Economic Capital - Sensitivity to Contribution Rate

0.020 0.020 Percentiles Percentiles 50th 50th 10th 10th 0.5th 0.5th Density Density 0.010 0.010 0.000 0.000 -400-200 0 100 -400-200 0 100 PVFP (as a % of A_0) PVFP (as a % of A_0)

Contribution rate – 8.3%

- Motivation
- Overview
- Assumptions and Methodology
- UK's Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Summary

Summary

- There is a very large range of potential results
- The stylized US plan is more volatile than the USS
 - Economic capital twice as large as a percentage of starting assets
 - Economic capital also larger in absolute terms
- The beneficial effect on economic capital of increasing the allocation to long bonds is greater in the stylized US plan
 - Larger proportion of nominal (rather than inflation protected) benefits

References

- Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A., and Balevich, I. A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. *North American Actuarial Journal* 13, no. 1: 1-35, 2009.
- Hojsgaard, S., Edwards, D. and Lauritzen, S. Graphical models with R. *Springer Science & Business Media* 2012.
- Oberoi, J., Pittea, A. and Tapadar, P. *A graphical model approach to simulating economic variables over long horizons*. To appear in Annals of Actuarial Science, 2019.
- Porteous, B.T., Tapadar, P. and Yang, W. Economic capital for defined benefit pension schemes: An application to the UK Universities Superannuation Scheme. *Journal of Pension Economics & Finance*, 11, no. 4: 471-499, 2012.