Scenario Weights for Importance Measurement

An R Package for Sensitivity Analysis

Andreas Tsanakas

joint work with Alberto Bettini, Pietro Millossovich and Silvana Pesenti

https://github.com/spesenti/SWIM

Actuarial Teachers' and Researchers' Conference University of Liverpool, 27-28 June 2019

Complex quantitative models

- Capital modelling and beyond
- Granularity v opaqueness

Complex quantitative models

- Capital modelling and beyond
- Granularity v opaqueness

Questions

- Which parts of the portfolio drive performance?
- Where do model-risk vulnerabilities lie?

Complex quantitative models

- Capital modelling and beyond
- Granularity v opaqueness

Questions

- Which parts of the portfolio drive performance?
- Where do model-risk vulnerabilities lie?

Sensitivity analysis

- Repeated model runs
- What to do with the results?

Complex quantitative models

- · Capital modelling and beyond
- Granularity v opaqueness

Questions

- Which parts of the portfolio drive performance?
- Where do model-risk vulnerabilities lie?

Sensitivity analysis

- Repeated model runs Single model run
- What to do with the results? Consistent sensitivity measurement

Overview

Example

Scenario Weights

The SWIM package in ${\sf R}$

Example

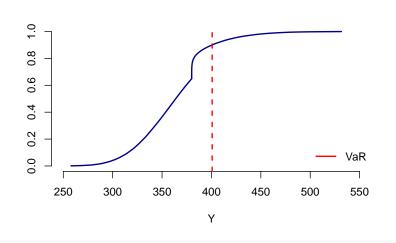
A non-linear insurance portfolio

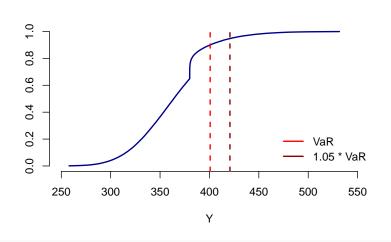
Portfolio consisting of

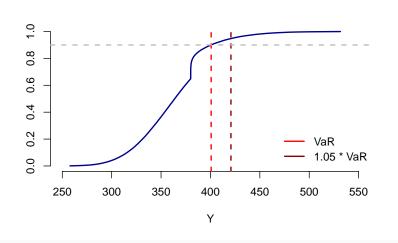
- Two lines of business
- Same multiplicative factor, e.g. inflation
- Reinsurance layer on the portfolio
- Reinsurance company can default

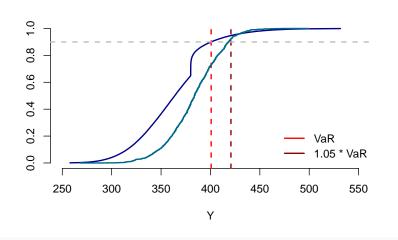
A non-linear insurance portfolio

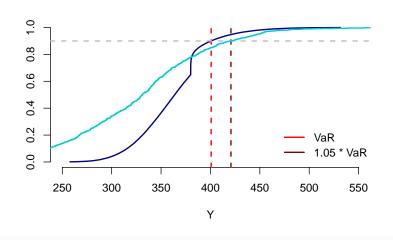
Portfolio consisting of

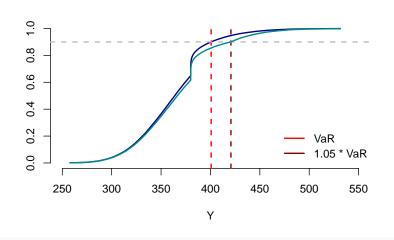

- Two lines of business
- Same multiplicative factor, e.g. inflation
- Reinsurance layer on the portfolio
- Reinsurance company can default


	Input risk factors	Output		
X_1	Claims from 1st LoB	Y	Portfolio loss	
X_2	Claims from 2nd LoB			
X_3	Multiplicative factor			
X_4	% of RI recovery lost			


than in the current model?


What if the portfolio VaR was 5% higher


What if the portfolio VaR was 5% higher than in the current model?
How would input factors reflect that change?



Scenario Weights

Constructing scenario weights

- 1. Define a **stress** on a random variable (risk factor or output) as a change in the value of a risk measure
 - Value-at-Risk, Expected Shortfall (TVAR)
 - Moments, probabilities, covariances
- 2. Derive scenario weights (change of measure) such that
 - re-weighted output fulfills the required stress
 - most plausible / least distorting, by minimising relative entropy

Constructing scenario weights

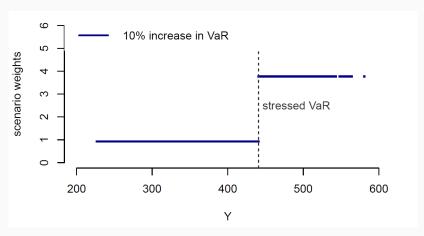
- 1. Define a **stress** on a random variable (risk factor or output) as a change in the value of a risk measure
 - Value-at-Risk, Expected Shortfall (TVAR)
 - Moments, probabilities, covariances
- 2. Derive scenario weights (change of measure) such that
 - re-weighted output fulfills the required stress
 - most plausible / least distorting, by minimising relative entropy
- ➤ Typically we have a Monte Carlo sample and work with the empirical distribution.

Literature

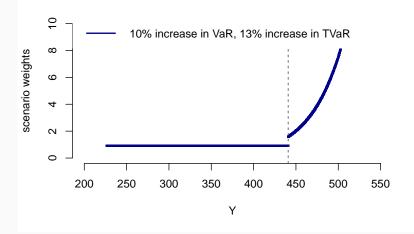
Stressing moments:

• [Csiszár, 1975]

Stressing VaR and ES:

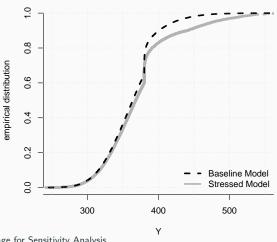

• [Pesenti et al., 2019]

See also:

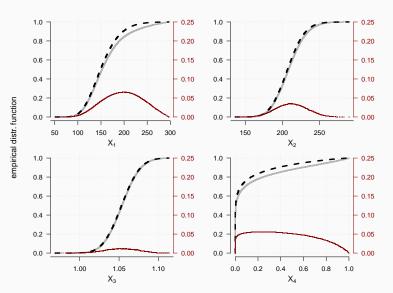

[Weber, 2007], [Glasserman & Liu, 2010], [Breuer et al., 2012]
 [McNeil & Smith, 2012], [Cambou & Filipović, 2017]

Scenario weights for a stress on VaR

$$\frac{Prob(\mathsf{Scenario}\ i\ |\ \mathsf{high}\ Y)}{Prob(\mathsf{Scenario}\ i\ |\ \mathsf{low}\ Y)} = 4.10$$



Scenario weights for a stress on VaR and TVaR



Insurance portfolio - Output

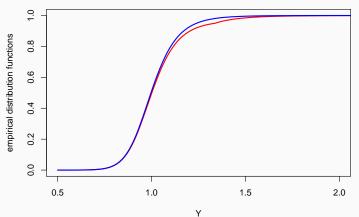
Stress VaR by 10% and TVaR by 13%, at level 0.95

Insurance portfolio - Inputs

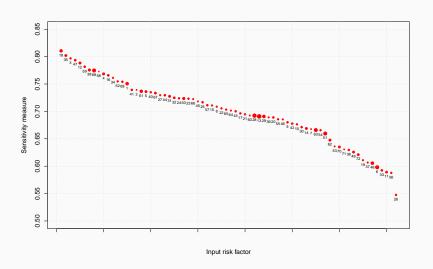
difference of empirical distr.

Insurance portfolio - statistics

	X_1	X_2	X_3	X_4	Y
Mean Mean, stressed	150 157	200 202	1.05 1.05	0.10 0.14	362 371
Relative increase	5%	1%	0%	44%	3%
Standard deviation Standard deviation, stressed	35 43	20 21	0.02 0.02	0.20 0.26	36 50
Relative increase	25%	5%	1%	30%	38%


A sensitivity measure

Sensitivity measure for input risk factor \boldsymbol{X}_i


$$\Gamma_i = \frac{E^{\text{stressed}}(X_i) - E(X_i)}{\text{normalised}}$$

Real-data example

Distribution of the portfolio loss (blue) and after re-weighting (red).

Real-data example

SWIM - An R Package for Sensitivity Analysis

The SWIM package in R

State of play

Current location of the package:

 https://github.com/spesenti/SWIM install_github("spesenti/SWIM")

Coming soon

• CRAN & vignette

State of play

Current location of the package:

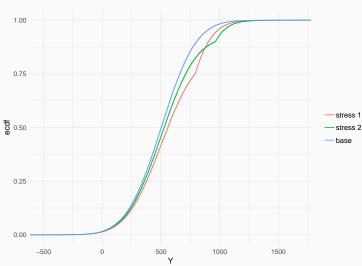
 https://github.com/spesenti/SWIM install_github("spesenti/SWIM")

Coming soon

CRAN & vignette

From the editors of the Annals of Actuarial Science

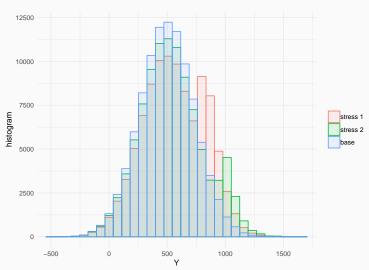
• Special issue on Insurance Data Science


```
https://www.cambridge.org/core/journals/
annals-of-actuarial-science/information/call-for-papers
```

Stress

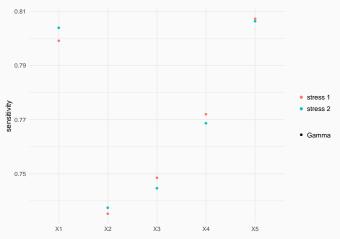
Stress

Plotting


plot_cdf()

SWIM - An R Package for Sensitivity Analysis

Plotting


Statistics

summary()

```
$ stress 1
                Y
                     X1
                            X2
                                   X3
                                         X4
                                                X5
           563.41 116.05 108.75 109.98 112.15 116.48
mean
sd
           263.89
                  81.20
                         46.24 52.49
                                      63.53
                                             81.39
skewness
          -0.05 -0.03 -0.01 -0.02 -0.03 -0.03
ex kurtosis -0.43 -0.22 -0.16 -0.16 -0.17 -0.23
1st Qu.
         374.89 59.70 77.01 73.80
                                      68.30 59.76
Median
           555.48 116.12 108.81 109.99 112.20 116.35
3rd Qu.
           788.79 173.01 140.67 146.25 156.63 174.25
```

Sensitivity Measures

sensitivity() importance_rank() plot_sensitivity()

THANK YOU FOR YOUR ATTENTION!

https://github.com/spesenti/SWIM

install_github("spesenti/SWIM")

References I

Breuer, T., Jandačka, M., Mencía, J., & Summer, M. (2012). A systematic approach to multi-period stress testing of

portfolio credit risk.

Journal of Banking & Finance, 36(2), 332-340.

Cambou, M. & Filipović, D. (2017).

Model uncertainty and scenario aggregation.

Mathematical Finance, 27(2), 534-567.

Csiszár, I. (1975).

I-divergence geometry of probability distributions and minimization problems.

The Annals of Probability, 3(1), 146–158.

References II

Glasserman, P. & Liu, Z. (2010).

Sensitivity estimates from characteristic functions.

Operations Research, 58(6), 1611–1623.

McNeil, A. J. & Smith, A. D. (2012).

Multivariate stress scenarios and solvency.

Insurance: Mathematics and Economics, 50(3), 299–308.

Pesenti, S. M., Millossovich, P., & Tsanakas, A. (2019).

Reverse sensitivity testing: What does it take to break the model?

European Journal of Operational Research, 274(2), 654–670.

References III

Weber, S. (2007).

Distribution-invariant risk measures, entropy, and large deviations.

Journal of Applied Probability, 44(1), 16-40.