
1 | P a g e  

 

Forecasting Network faults with Bayesian Spatio-temporal Statistical Models 

 

Thomas Adam Statham 

200936388 
 

A Master’s dissertation submitted to the faculty of Science and Engineering at the University 
of Liverpool, in partial fulfilment of the requirements for the degree of Geographic Data 

Science (MSc) in the department of Geography and Planning 

  

https://www.cdrc.ac.uk/wp-content/uploads/2015/06/VM-faults.pdf
https://www.cdrc.ac.uk/wp-content/uploads/2015/06/VM-faults.pdf


2 | P a g e  

 

Abstract  

The focus of this study was to explore different methods of one step ahead forecasting of 
Virgin Media faults. Accurate forecasts of network faults is important for determining the 
number of engineers and truck call outs necessary to fix any service disruptions. In addition 
to the cost of broadband services, reliable services are also important for influencing 
consumer demand and customer churn. Moreover, understanding the number and spatial 
distribution of faults is necessary for determining the number of call centre and engineer 
employees for identifying and fixing network faults. This is important from an operational 
efficiency and network maintenance costs. 

 

We extend the conventional time-series approaches in the telecommunication literature by 
incorporating space for one step ahead monthly forecasts of network faults. We applied four 
different model specifications: a stationary time-series process, a non-stationary time-series 
process, a spatio-temporal (ST) model and a spatial-temporal interaction (STI) model. To 
ensure customer confidentiality, we aggregated all network faults at the postcode level to the 
Middle Layer Super Output Area (MSOA) and space was incorporated using a Besag-York-
Mollié (BYM) prior. We applied these models using a Bayesian Hierarchical model through 
the numerically efficient R-INLA package. We also looked at potential sociodemographic 
factors and their impacts on network faults. The study area was North West England, for 
areas with Virgin Media coverage and the models was applied using past network faults to 
forecast January to March 2018. 

 

The results support the value of further incorporating space into conventional time-series 
approaches. Although the model fit of the most complex STI model was the best, the ST 
model had the highest average forecast accuracy or difference between observed and 
forecasted network faults. The ST model took significantly less time to estimate faults than 
the STI model, which took a similar amount of time as the non-stationary time series prior. 
We used the stationary temporal prior for ST and STI models because it had a significantly 
higher forecast accuracy. Moreover, incorporating space allows the forecaster to identify 
how the spatial distribution of faults changes over time at a much finer spatial scale than the 
common regional level of analysis. For example, there was a higher probability of forecasted 
faults exceeding 15 faults in North Liverpool, Saint Helens and Wigan. 

 

This study demonstrates that it’s possible to obtain fast and accurate forecasts of network 
faults at this scale using spatio-temporal models. Moreover, this methodology could be 
extended to other applications, including forecasting broadband demand in areas which do 
not have coverage. There is scope for future research to examine different model 
specifications of space-time with and without a space-time interaction term and to apply this 
methodology over a larger study area. There is also a need to apply this methodology over a 
longer period, given the lack of literature in this field.  
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1 Introduction  
 

Fast and reliable broadband services is increasingly important in the United Kingdom (UK), 
with the ongoing transition towards an information society. In 2017, the proportion of 
individuals using broadband was higher than any other key media service and it’s estimated 
that the average fixed-broadband data traffic for households has increased from 97 
Gigabytes (GB) in 2015 to 132 Gb in 2016 (Ofcom, 2017). Superfast fibre and cable 
broadband offer significantly faster speeds than Asymmetric Digital Subscriber Line (ADSL) 
services, defined by the UK government as speeds greater than 24Mbits/s (Priestley & 
Baker, 2017). The Broadband Delivery UK (BDUK) is a government policy for rolling out 
superfast broadband to as much of the country. Another important aspect of the BDUK is to 
ensure that basic fixed-broadband services are affordable to all UK citizens and customers. 
Superfast broadband is important for enabling businesses to generate prosperity and to 
empower every citizen to take part in society by binding families and friends together and to 
keep us entertained (Cairncross, 2001). As broadband plays an increasingly critical role in 
our lives, the supporting network infrastructure must keep pace to ensure reliable services. 

 

The market for Superfast Broadband Service Providers (BSP) has become increasingly 
competitive and there is a need to provide affordable and reliable services. To remain 
competitive, BSP rely on demand forecasts, using socio-economic information to target 
areas that contain high numbers of potential customers who are interested in and able to 
afford superfast broadband (Fildes & Kumar, 2002; Hopkins, et al., 1995). They also rely on 
past observations of service disruptions or failures to forecast where they are more likely to 
happen (Deljac, et al., 2011; Grubesic & Murray, 2002). Service disruptions happen because 
of conditions that results in a specified service going beyond those defined in the contract. 
Service disruptions are caused by a variety of faults and minimising faults is a top priority of 
BSP (Fildes & Kumar, 2002). Accurate network fault forecasts are important for network 
operational efficiency, including determining the number of engineers and truck call outs 
necessary to fix any service disruptions. In addition to the cost of broadband services, 
reliable services are also important for influencing consumer demand and customer churn.  

 

In a highly competitive market, telecom problems have led to innovative time series forecast 
methods (Fildes & Kumar, 2002; Hopkins, et al., 1995). Typically, Autoregressive (AR) type 
models are used to capture the statistical characteristic of Temporal Dependency (TD), 
where the conditional expectation of future events is regressed on earlier values plus some 
noise. Despite the ubiquity of network faults, the forecasting literature on this topic is limited 
(Deljac, et al., 2011; Sandholm, 2007). Forecasting faults is a challenging task because of 
their stochastic nature and the rate they occur is much higher than in any other industry. 
Moreover, conventional forecasting methods rely on stable trends and seasonal patterns, 
which are not met by the stochastic nature of faults (Ozturkmen, 2000).  

 

A small number of studies have analysed the spatial distribution of broadband access. it’s 
recognised that spatial disparities in broadband access exist (Grubesic & Murray, 2002). 
Spatial Autocorrelation (SA) is the statistical characteristic, where nearby observations in 
space tend to be more similar than those further apart (Tobler, 1970). Spatial information are 
defined by Geographical coordinates, which are typically applied in Geographic Information 
Systems (GIS). Since SA violates the independence and identically distributed (iid) 
assumption of many statistical methods, not accounting for this structure leads to biased 
parameter estimates (Anselin & Griffith, 1988). Therefore, a natural extension of the basic 
time-series models in the forecast literature is to incorporate space, within a hierarchical 
structure to account for Geographical variations in faults. One of the leading United States 
telecommunication companies AT&T, recognizes that spatio-temporal research will play an 
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increasing role in the forecasting and strategic planning of future communication 
technologies (Volinksky, 2018). For example, the rollout of 5G connectivity will require more 
local planning of key infrastructure, to ensure complete coverage of network areas. 
Moreover, analysing the spatial distribution of faults allows the forecaster to identify how the 
spatial distribution of network faults changes over time at a much finer spatial scale than the 
common regional level of analysis. Moreover, also accounting for the uncertainty component 
of space should give a higher forecast accuracy of network faults.  

 

Bayesian Markov Chain Monte Carlo (MCMC) algorithms are typically used for spatio-
temporal modelling because they can explicitly introduce SA and TD simultaneously using a 
Bayesian Hierarchical Modelling Framework (BHMF), where each level can be modelled as 
a stochastic process. These models have been extensively applied in the disease mapping 
literature, to gain a better understanding of the processes driving the disease and to identify 
areas characterized by high or low relative risk (Knorr-Held, 2000; Knorr-Held & Besag, 
1998; Lawson, 2013; Xia , et al., 1997). Typically, the spatial component is modelled as 
aggregated areal counts of disease risk instead of a continuous process, using Conditional 
Autoregressive (CAR) priors. However, the nature of modelling both space and time 
simultaneously using MCMC algorithms gives computational issues and so the application of 
spatio-temporal has been limited and restricted to small area studies.  

 

We propose a Bayesian spatio-temporal method for modelling and forecasting faults for a 
BSP. It extends the limited literature on forecasting network faults by explicitly introducing 
space in a BHF. Statistical inference is achieved with the Integrated Nested Laplace 
Approximation (INLA) approach, as an efficient alternative to MCMC algorithms (Rue, et al., 
2009). We include four different model specifications, with two conventional time-series 
priors, one also introducing space with a CAR prior and another with a space-time 
interaction term (Knorr-Held, 2000). This allows us to assess whether introducing space with 
time-series priors gives a higher forecast accuracy. Several covariates in the literature are 
included to explore their relationship with faults. Furthermore, we apply this methodology to 
North West England, a scale much larger than conventional small area studies in the 
literature of spatio-temporal modelling.  

 

1.4 Aims and Objectives 

The aim of this study is to extend the limited time-series forecasting literature on network 
faults by incorporating space. Specifically, we apply spatio-temporal areal unit modelling to 
forecast Virgin Media network faults in North West England. The objectives of this study 
involve; 

1. Evaluate whether incorporating space with time-series priors gives a higher forecast 
accuracy of network faults, than conventional time-series forecasting. 

2. Explore whether incorporating an additional spatio-temporal interaction term further 

improve the forecast accuracy of network faults compared to spatio-temporal models. 

3. Assess what broadband inequality and socio-economic factors are most related to 
Virgin Media network faults. 

4. To identify whether there is a spatial distribution of Virgin Media network faults in 
North-West England and how they change over time. 
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2 Literature Review 
 

This chapter highlights the conventional time-series methods used in the telecommunication 
literature, as well as introducing spatial statistics from the wider literature. We begin by 
introducing some background information about network faults, including their distribution 
and association with socio-economic and inequality related factors (2.1). The second section 
(2.2) introduces conventional time-series in the literature and then considers how they have 
been applied in the telecommunication industry. The third section (2.3) introduces spatial 
statistics and specifically spatio-temporal models as a method for forecasting network faults. 
We finalise by stating our contributions to the forecasting network faults literature (2.4). 

 

2.1 Network Faults 
 

Network fault events do not happen continuously, and this stochastic nature is related to the 
many internal and external drivers of them. The most commonly cited network fault type is 
Customer Equipment (CE), related to problems with modems, ADSL splitters and other 
equipment (Deljac, et al., 2011). External factors that influence network faults include bad 
weather, which has been shown to increase Wiring and Radio Frequency related faults 
(Deljac, et al., 2011). For example, higher than average temperatures can overheat external 
cabinet boxes, resulting in bandwidths beyond their specifications. 

 

Although network faults are a stochastic process, there are periods when network faults are 
more likely, which are associated with broadband usage. There exists daily, weekly and 
monthly periodicities of broadband usage and associated faults (Deljac, et al., 2011). For 
example, the average download speed for November 2015 across all United Kingdom 
connections was 27.0Mbits/s during the 8pm to 10pm weekday peak demand, which was 
85% of the 31.6Mbit/s average maximum speed and 93% of the 28.9Mbit/s 24-hour average 
(Ofcom, 2016). They also found that the fastest download speeds are experienced between 
the hours of 2-3am. Another study found that monthly network faults do not vary significantly 
and exhibit a stationary process, where the probability distribution or mean and variance 
does not change when shifted over time (Deljac, et al., 2011). 

 

Whilst (Cairncross, 2001) argued that space will be rendered virtually meaningless by near 
instantaneous communications, local Geographies still plays a pivotal role in access to 
broadband (Grubesic & Murray, 2002). Within a profit driven market, BSPs may target areas 
that contain a higher number of potential customers who are interested in and are able to 
afford superfast broadband (Grubesic & Murray, 2002). This suggests that a Geography of 
internet use exists, determined by their socioeconomic characteristics. 

 

The 2018 Internet User Classification (IUC) presents one of the largest bespoke 
classifications for describing the Geography of internet use and engagement in England and 
Wales (Alexiou & Singleton, 2018). Understanding the Geography is important for both 
Government and corporate policy making, including mitigating digital inequalities and for 
identifying new customers. The IUC shows that demographic factors are the most influential 
on internet use and engagement, including age and ethnicity. For example, young 
populations are more engaged than those who are elderly, and they tend to reside in popular 
student areas, within proximity to universities in inner cities. Therefore, internet accessibility 
is also influenced by where we live.  
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Broadband access to urban areas with high-density populations has typically preceded that 
of rural locals with low-density populations (Grubesic & Murray, 2002). This has largely been 
driven by the profit-driven BSP market, where they target areas with higher broadband 
demand. Whilst this digital divide has narrowed to just 4% of UK households not receiving 
the Universal Service Obligation (USO), defined as a broadband download speeds of at 
least 10Mbit/s and an upload speed of at least 1Mbit/s (Ofcom, 2017), regional disparities 
still exist. For example, just 2% of Scottish urban properties don’t receive the USO, whereas 
27% of rural households do not receive the USO (Ofcom, 2017). Further inequalities in 
broadband access are characterized by the lowest income households, who are the least 
likely to take up fixed broadband services, due to increasing fixed monthly costs (Alexiou & 
Singleton, 2018; Ofcom, 2016).  

 

2.2 Time-series forecasting  
 

2.2.1 Time-series methods  
A Time series exhibit a special case of the Gaussian process or Markov property, where 𝑥𝑡 
is serially dependent on other observations. Typically, time-series exhibit non-linear patterns, 
defined as a set of observations 𝑥𝑡, each one being recorded at a specific time 𝑡, which 
typically represents a stochastic process (Chatfield, 2016). Moreover, there is a decay of 
dependence, where 𝑥𝑡+1 becomes increasingly near independence as 𝑥𝑡+1 → ∝. TD 
describes the similarity between observations as a function of time lag between them; 

 

 𝑅(𝑠, 𝑡) =  
𝐸[(𝑥𝑡− 𝜇𝑡)(𝑥𝑠− 𝜇𝑠)]

𝜎𝑡𝜎𝑠
, (1) 

 

where E is the expected value operator. If the function 𝑅 is well defined, its value lies within 
the range -1 to 1, with 1 indicating strong positive correlation, 0 indicating no association and 
1 indicating strong negative association (Shumway & Stoffer, 2017). If 𝑥𝑡 is a stationary 
process, then TD can be written as; 

 𝑅(𝜏) =  
𝐸[(𝑥𝑡− 𝜇)(𝑥𝑡+𝜏− 𝜇)]

𝜎2 . 

 

(2) 

For a deterministic forecasting model, 𝑥𝑡+1 is based only on the current state 𝑥𝑡 of the time-
series. In contrast, the Markovian property in probabilistic or stochastic models relaxes this 
assumption, where a noise component is added to account for all the unknown factors that 
are common in time-dependent observations (Brockwell & Davis, 1996). Therefore, the 
probability of future values is only partly explained and conditioned by past values.  

 

Whilst time-series models can be used for a description of seasonal pattern and trends, we 
are interested in forecasting future values of that series. The objective of forecasting is to 
obtain a residual as close to zero or the difference between actual and forecasted values. 
Whilst network faults represent a continuous process that are realizations of a stochastic 
random process, the focus of this study is one step ahead monthly forecasts, so we focus on 
discrete time series analysis. A time series that is said to be discrete when observations are 
taken only at specific times and are usually equal spaced (Chatfield, 2016). 

 

Autoregressive (AR) models are a broad class of time-series models, where the current 
value of the process is expressed as a finite, linear aggregate of previous values 
(Schabenberger & Gotway, 2005). Instead of estimating the whole conditional distribution of 
𝑥𝑡, we just look at the conditional expectation where we regress 𝑥𝑡  on earlier values. An AR 
model or order 1 (AR1) depends on the immediate, previous value, which can be expressed 
as; 
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 𝑦𝑡 = 𝛽0 + 𝛽1𝑋𝑡 + 𝜀𝑡, (3) 
   
 𝜀𝑡 = 𝑝𝜀𝑡−1 +  ω𝑡. (4) 

 

Here the iid assumption of the autoregressive error term 𝜔𝑡 follows the usual assumption 
about regression error terms;  

 

 ω𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎2). 
 

(5) 

The error at time t is a fraction of the error at time 𝑡 plus some new perturbation ω𝑡. The 
relationship of 𝑦 and 𝑋 variables at time 𝑡 being related to the 𝑦  and  𝑋 variable 

measurements at time t − 1, which are accounted into the error term at concurrent times. 

Moreover, the probability distribution or variance 𝜎2 and mean 𝜇 is the same for all values of 

𝑡, independent of the time lag, expressed as a stationary process (Chatfield, 2016). 

 

A Moving Average (MA) prior is a linear combination of past error terms. For a first order MA; 

 

 𝑥𝑡 = 𝜇 + 𝑤𝑡 + 𝜃1𝑤𝑡−1, (6) 
   
 𝑤𝑡~𝑖𝑖𝑑 𝑁(0, 𝜎𝑤

2 ). 
 

(7) 

Here 𝑤𝑡 follows the iid assumption, which is normally distributed with a mean 𝜇 0 and the 

same variance 𝜎2. AR and MA priors can be combined to form a general class of time-series 
models, Autoregressive Integrated Moving Average (ARMA) Models (Box & Jenkins, 1976); 

 

 𝑥𝑡 =  ∑ 𝜑𝑖𝑋𝑡−1 +
𝑝
𝑖=1 ∑ 𝜃𝑖𝜀𝑡−1 + 𝜀𝑡

𝑞
𝑖=1 , (8) 

 

where 𝑥𝑡 is the forecasted value 𝜑 and 𝜃 are the regression parameters for the calculated 

model, 𝑝  and 𝑞 determines the number of regression terms that are considered and 𝜀𝑡 
characterizes error. In other contexts, non-stationary time-series can be expressed using 
an Autoregressive Integrated Moving Average (ARIMA) prior.  

  

The Autoregressive Conditionally Heteroscedastic (ARCH) prior is used to describe the 
variance of the current error term as a function of the sizes of the previous time periods error 
terms. The most important extension of the ARCH process is the generalized ARCH 
(GARCH) process, which is said to be stationary if;  

 

 𝑋𝑡 = 𝜎𝑡𝑍𝑡 , (9) 
   
 {𝑍𝑡}~ 𝐼𝐼𝐷 𝑁(0,1). (10) 

 

A Random Walk (RW) prior is a special case of AR models, which represents non-
stationary time-series;  

 𝑥𝑡 =  ∑𝑗=1
𝑡 𝑤𝑗, (11) 

 

 

𝛾𝑥(𝑠, 𝑡) = 𝑐𝑜𝑣(𝑥𝑠, 𝑥𝑡) = 𝑐𝑜𝑣 (∑ 𝑤𝑗,

𝑠

𝑗=1

∑ 𝑤𝑘

𝑡

𝑘=1

) = min{𝑠, 𝑡} 𝜎𝑤
2 , 

(12) 
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The TD function of a RW prior depends on the time values 𝑠 and 𝑡 and not on the time lag. 

Moreover, the variance of a RW, increases without being bounded as time 𝑡 increases.  

 

2.2.2 Applications of time-series models in the telecommunication literature 
In a highly competitive market, telecom problems have led to innovative time series methods 
for forecasting customer demand (Fildes & Kumar, 2002). One study applied these methods 
for assessing broadband demand within a local network system (Sandholm, 2007) and 
another forecasted customer demand at the national scale (Hopkins, et al., 1995). Despite 
the ubiquity of faults, there has been a limited number of studies who have applied such a 
methodology for forecasting network faults (Deljac, et al., 2011). 

 

One study applied several autoregressive models, including the ARMA, ARIMA and GARCH 
models for short-term and long-term forecasting of network faults (Deljac, et al., 2011). For 
all forecast intervals, the forecast accuracy was highest for the ARIMA model, defined as 
having the smallest Cumulative Mean Square Error (MSE). Whereas the MSE was 
significantly higher for the GARCH and ARMA models for one day ahead forecasts, the 
ARIMA and ARMA models had similar forecasts for one step ahead monthly forecasts. They 
discussed that this is because faults represent the cumulative sum of faults over a longer 
time than daily and weekly forecasts, subject to a higher number of random factors that are 
unaccounted for. Moreover, another network study found that the RW1 prior outperformed 
the ARIMA models for one step ahead forecasting but the opposite for two and three steps 
ahead forecasts (Sandholm, 2007). This is an unsurprising result, given the smoothing effect 
of the ARIMA model. Overall, the selected forecast model depends on the purpose of the 
study and the underlying process.  

 

2.3 Spatio-temporal models as a forecasting method 
 

Although GIS and associated spatial models have been applied for evaluating the 
Geography of potential broadband customers (Grubesic & Murray, 2002) and national 
broadband access (Downes & Greenstein, 2005), they haven’t been applied for forecasting 
network faults. The ability to represent, manipulate and analyse spatial information within a 
forecasting framework makes it possible to calculate areas with a higher probability of faults 
within the main study area. Furthermore, GIS enables one to examine various spatial 
relationships, including the use of the widely available UK Census information on socio-
economic and demographic factors. This gap in the literature is unfortunate if we consider 
that local Geographies play a key role on broadband usage and network faults. Here we 
present spatio-temporal models from the wider literature.  

 

2.3.1 Spatio-temporal models 
Observations in spatial data are realizations of a stochastic processed indexed by space;  

 

 𝑌(𝑠) = { 𝑦(𝑠), 𝑠 ∈ 𝐷} (13) 

 

For area and lattice data, 𝑦(𝑠) is a random aggregate value over each spatial unit within 
well-defined boundaries (Blangiardo & Cameletti, 2015). The former represents irregular 
units, such as administrative boundaries and the latter represents regularly space units 
(Cressie, 1993). SA is statistical characteristic, where nearby observations, defined in terms 
of Euclidean distance tend to be more similar than those further apart (Tobler, 1970). When 
present, SA violates the independence assumption in many statistical models and not 
accounting for this structure leads to biased parameter estimates (Anselin & Griffith, 1988). 
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The statistical modelling of spatio-temporal processes represents several decades of cross-
field research in time-series analysis, spatial statistics and spatial econometrics (Elhorst, 
2003; Huang, et al., 2010; Pfeifer & Deutsch, 1980). Space-time models consider correlated 
observations of a phenomena within fixed spatial and temporal areal units that change over 
time. A basic model assumes a Poisson distributed dependent variable in an infinite 

population with a small probability;  

 

 𝑅(𝑠, 𝑡) =  
𝐸[(𝑥𝑡− 𝜇𝑡)(𝑥𝑠− 𝜇𝑠)]

𝜎𝑡𝜎𝑠
, (14) 

 

 𝑦𝑖𝑗  ~ 𝑃𝑜𝑖𝑠(𝑒𝑖𝑗 , 𝜃𝑖𝑗), (15) 
 

 𝐿𝑜𝑔(𝜃𝑖𝑗) =  𝛼0 + 𝑆𝑖 + 𝑇𝑗, (16) 

 

where, S is the spatial term and T are the temporal term. The specification of the model can 
be extended to include an interaction between space and time or Space-Time Interaction 
(STI) δ𝑖𝑡, that accounts for any residuals not captured by the space-time model. Whilst 
(Bernardinelli, et al., 1995) extended the work of (Besag, et al., 1991) by incorporating a 
linear STI term, (Knorr-Held, 2000) presented four STI models that drop the assumption of 
linearity, capturing more commonly found non-linear time-series processes.  

 

2.3.2 Frequentist vs Bayesian approaches 
One study applied a spatio-temporal Poisson regression model using a Bayesian approach 
to investigate the link between ambient ozone and paediatric visits for asthma during the 
summers of 1993 to 1995 (Carlin, et al., 1999). The study compared their estimates against 
another study examining the same process but with a frequentist Poisson regression model 
(Tolbert, et al., 1997), which accounted for long-term temporal trends but not for TD and SA. 
The results indicated similar estimates of relative risk due to ozone exposure, but the 
Bayesian approach provides a natural framework for mapping the estimated values of risk. 

 

Whilst both Bayesian and frequentist approaches incorporate the likelihood from a current 
study, what differentiates them is that prior information is combined with the likelihood to 
form the Posterior distribution. Under Bayes theorem;  

 

 𝑝(𝜃|𝑦) =  
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 , 

(17) 

 

the posterior distribution 𝑝(𝜃|𝑦) represents the uncertainty about the parameter of interest 𝜃 
after observing the data, thus conditioning on 𝑦. Therefore, uncertainty is described by the 
posterior density, where the prior and likelihood are modelled as stochastic processes. This 
conditional independence assumption forms the basis for Bayesian inference, where 
knowledge is gained about unknown parameters 𝜃 and the distribution of unknown process 

𝜙 after observing the data 𝑦 (Banjeree, et al., 2004; Blangiardo & Cameletti, 2015). Thus, we 
need to calculate the posterior marginal distribution 𝜋(𝜙|𝑦) of each element of the latent 

model 𝜙 and the posterior marginal distribution 𝜋(𝜃|𝑦) of the hyperparameter vector 𝜃. The 
posterior probability of a parameter exceeding a specified threshold is also easily obtained 
from the posterior distribution, providing a more intuitive quantity than frequentist p-values. 
Bayesian inference is also appropriate when there are missing values, a common attribute of 
spatio-temporal data (Gelfand, et al., 2005; Haworth & Cheng, 2012). BHMFs account for 
the uncertainty of both space and time by modelling each parameter as a stochastic process 
at the next level (Banjeree, et al., 2004; Schabenberger & Gotway, 2005). 
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2.3.3 Markov Chain Monte Carlo methods 
Bayesian statistics has become more available to researchers, in part due to advances in 
computational power and the popular software packages BUGS and winBUGS using Markov 
Chain Monte Carlo methods (MCMC). Here the marginal posteriors are computed using a 
simulation-based technique, based on the Markov chain, where the sequence of random 
variables 𝜃1, … , 𝜃𝑛 for which the distribution of the sampled draws depends only on the most 
recent value 𝜃𝑡−1. Each simulation results in an improved approximation distribution, until it 
converges to a target distribution or stationary distribution, which must be defined (Gelman, 
et al., 2013). The main issue of such MCMC Bayesian inference is that such an approach 
can lead to several days of computing time. Another disadvantage is that the software 
packages require specialised programming that is non-trivial for applied researchers (Knorr-
Held & Rue, 2002). 

 

2.3.4 Integrated Nested Laplace Approximation 
The Integrated Nested Laplace Approximation (INLA) is alternative, numerically efficient 
approximation method of computing the marginal posteriors of the latent variables and 
hyperparameters of the Gaussian latent model; 

 

 𝜋(ξ𝑖|𝑦) =  ∫ 𝜋(ξ𝑖|𝜃, 𝑦)𝜋(𝜃|𝑦)𝑑𝜃, (18) 

 

 𝜋(θ𝑗|𝑦) =  ∫ 𝜋(θ|𝑦)𝑑𝜃−𝑗. (19) 

   
This approximation is based on efficient combination of Laplace approximations to the full 
conditionals  𝜋(𝜃|𝑦) and 𝜋(ξ𝑖|𝜃, 𝑦), 𝑖 = 1, . . , 𝑛 and numerical integration routines to integrate 

out the hyperparameters θ (Rue, et al., 2009; Blangiardo & Cameletti, 2015; Bivand, et al., 
2011). INLA covers a wide range of models that use Latent Gaussian processes from 
generalized and dynamic linear models to spatial and spatio-temporal models (Blangiardo & 
Cameletti, 2015). The general form of an LGM is the likelihood; 

 

 𝑦|𝑥, 𝜃2 ~ ∏𝑖  𝑝(𝑦𝑖|η𝑖 , 𝜃2), (20) 

Latent field; 

 𝑥|𝜃1 ~ 𝑝(𝑥|𝜃1) = 𝑁(0, ∑), (21) 

hyperparameters; 

 𝜃 = [𝜃1, 𝜃2]𝑇 ~ 𝑝(𝜃). (22) 

 

Where 𝑦 is an observed dataset, 𝑥 is the joint distribution of all parameters in the linear 

predictor including itself and 𝜃 are the hyperparameters of the latent field that are not 
Gaussian. If we can assume conditional independence in 𝑥, then this latent field is 
a Gaussian Markov Random Field (GMRF). This property allows Bayesian inference 
without the need to use the computationally intensive MCMC algorithms, based on 
simulation. Whereas MCMC algorithms require hours to days to run, INLA provides precise 
estimates in seconds or minutes (Cressie & Wilke, 2011). Moreover, a user-friendly R 
environment (R Core Team, 2015) allows flexible INLA with other spatial packages. 

 

2.3.5 Conditional Autoregressive (CAR) priors 
When working with areal data, SA is modelled through a neighbourhood structure 𝑄𝑖𝑗, which 

are commonly represented by Conditional Autoregressive (CAR) priors in a lognormal 
Poisson model (Besag, 1974). CAR priors are also a special class of GMRFs, where the 
conditional distribution of observations depends only on the values of its neighbourhood, 
where 𝑄𝑖𝑗 = 0 only if 𝑖 and 𝑗 are neighbours (Rue & Held, 2005). The most common CAR 



17 | P a g e  

 

specifications include the intrinsic CAR (ICAR) and Besag-York-Mollié (BYM) priors (Besag, 
et al., 1991) but alternative specifications can be applied (Leroux, et al., 2000; Stern & 
Cressie, 1999). We focus on the commonly applied BYM or convolution model, which 
includes both a structured and unstructured spatial component, to capture spatial and non-
spatial heterogeneity. The unstructured component ensures that if most of the variability is 
non-spatial, captured by 𝜃, it does not lead to a significant overestimation of the conditional 
variance in the structured spatial component. Using the notation of (Banjeree, et al., 2004), 
the BYM is specified as; 

 

 𝑌𝑖|𝜓𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖 𝑒𝜓𝑖), (23) 

For i ∈ 1: 𝑁 , where; 

 

 𝜓 = 𝑥𝛽 +  𝜃 + 𝜙. (24) 

 

The coefficients 𝛽 are modelled as fixed effects, 𝜃 is an ordinary random-effects component 

for non-spatial heterogeneity and 𝜙 is an ICAR spatial component.  

 

(Lee & Mitchell, 2012) proposed a different method to for capturing more localized spatial 
structures as an alternative to the single global level of spatial smoothing in space. They 
argue that this global level is too simplistic for real data, which exhibit sub-regions of 
stronger SA as well as locations at which the response exhibits a step-change. Moreover, 
the global level spatial smoothing effect also results in collinearity between any spatially and 
temporally smooth covariates, which can lead to poor estimates of the fixed effects. 
Nonetheless, since we have no prior knowledge about the spatial neighbourhood structure of 
faults, we focus on the most commonly used BYM specification. 

 

2.4 Summary 
 

Forecasting approaches in the telecommunication literature have focused on time-series 
models but these do not consider the statistical characteristic SA, which can lead to biased 
estimations. Our contributions to the forecasting network faults literature lie in several 
aspects. Primarily, we extend the conventional time-series models by incorporating space 
using the computationally efficient R-INLA. Specifically, we use BYM priors to incorporate 
space, as aggregated fault counts at the Middle Layer Super Output Area (MSOA) level. In 
total, four model specifications are defined, which include two models accounting for TD 
only, with the stationary AR1 prior and non-stationary RW1 prior and two also including SA, 
with one using just the BYM prior and another also including a spatio-temporal interaction 
term. For each model specification, we also include several covariates from the literature to 
quantify associations between broadband access inequality and socio-economic 
characteristics. To the best of our knowledge, no study has applied such a methodology and 
we evaluate whether incorporating space improves the model fit and forecast accuracy over 
conventional time-series models. 
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3 Methodology  
This chapter presents the study area (3.1), data collection (3.2) and data analysis (3.3) 
procedures used for addressing the research aims and objectives. The main aim of this 
study was to extend the conventional time-series literature for forecasting faults by including 
space or spatial effects. The objectives of this study involve; 

1. Evaluate whether incorporating space with time-series priors gives a higher forecast 

accuracy of network faults than conventional time-series forecasting. 

2. Explore whether incorporating an additional spatio-temporal interaction term further 

improve the forecast accuracy of network faults compared to spatio-temporal models. 

3. Assess what broadband inequality and socio-economic factors are most related to 

network faults. 

4. To identify whether there is a spatial pattern of Virgin Media network faults in North-

West England and how they change over time. 

 

3.1 Study area 
 

This study focused on North West England, one of nine regions in England. Specifically, we 
focused on areas with Virgin Media coverage, which covers approximately 4215km2 and 
600,000 Virgin Media customers. In total, 662 MSOAs were analysed, each with a mean 
population of 7,200, ranging from 5,000 to 15,000 (ONS, 2017). This Census areal unit was 
selected for its ability to be combined with a range of socio-economic related Census 
covariates. Whilst the smaller Local Layer Super Output (LSOA) areal unit could be used to 
give more detailed information, running the most complex STI model at this Geographical 
scale would require access to high performance computing. Therefore, we selected the 
MSOA level, which still gives a good level of detail, at a much finer spatial scale than the 
common regional level analysis. 

 

3.2 Data and variables 
 

All data used in this study are secondary data sources, aggregated to the MSOA level. 
Whilst we acknowledge the scaling and aggregation problems of areal data, we minimize 
these by selecting the smallest level of aggregation achievable with our resources 
(Openshaw, 1984). 

 

3.2.1 Dependent variable 
Virgin Media provided observed network faults from January 2017 to March 2018, including 
the time of fault, the location where the fault happened (LSOA) and the type of fault. The 
location of customer faults was provided by Virgin Media at the LSOA level to ensure 
customer confidentiality. Data pre-processing was applied to aggregate all faults to the 
MSOA level and by month, using the sum of observed faults.  

 

3.2.2 Covariates 
Based on the literature, we included several covariates in all model specifications (3.4), 
which was defined as fixed effects in the BHMF (Table 1). Level of income was included 
because this is typically modelled in conventional broadband demand forecasting models 
(Ozturkmen, 2000). Income is measured by income deprivation, one of several indices of 
relative deprivation for England (2015). The average fixed broadband usage (Ofcom, 2017) 
in Gigabytes (GB) was also included as another indicator of broadband demand. We also 
included the IUC because it best describes the Geography of socio-economic groups based 
on internet engagement (Alexiou & Singleton, 2018). Since this covariate represents 10 
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different socio-economic groups related to internet engagement, the first group is taken as a 
dummy variable and we aggregate the data from the LSOA to the MSOA level using the 
mode. We include the proportion of Elderly to evaluate the significance of this age group on 
faults. This is because this age group will increasingly represent a significant share of future 
broadband demand, as the UK age-structure is changing (Ofcom, 2016). Therefore, we 
assess the relationship between network faults and this age group over time. As Education 
is a network fault category for Virgin Media, we include Education deprivation to measure the 
association with network faults.  

 

 Table 1. Description of the Covariates 
 

Covariate Description 

IUC Group 
The Internet User Classification (IUC) is a bespoke classification that describes how 
different socio-economic groups living in England and Wales engage with the internet. 
This CDRC dataset was aggregated to the MSOA level using the mode. 

Education 
Deprivation 

This represents one of the Indices of Multiple Deprivation (IMD) in England. Education 
score was selected, where higher values indicate lower levels of education and 
generally the more deprived an area is. This CDRC dataset was aggregated from the 
LSOA to MSOA level using the average score.  

Income 
Deprivation  

This represents one of the IMD (2015). Income score was selected, where larger 
values indicate the more deprived an area is. The dataset was downloaded from the 
CDRC at the LSOA level and was aggregated to the MSOA level using the average 
score.  

Elderly 
Population  

The proportion of elderly population was calculated from the total population, defined 
as those aged 65 plus. This CDRC dataset was aggregated from the LSOA to MSOA 
level using the average score.  

Broadband 
Use 

This represents the average data usage in Gigabytes (GB) for fixed-line broadband 
connections. This formed part of the Ofcom Connection Nations Report 2017, an 
analysis of the major fixed telecommunication operators (BT, Virgin Media, Sky, Talk 
Talk, Vodaphone and KCOM). The dataset was aggregated from the postcode level to 
the MSOA level, taking the average data usage. 

* CDRC represents the Consumer Data Research Centre, MSOA represents Middle Layer Super Output 
Areas (MSOA) & LSOA represents the Lower Layer Super Output Areas (LSOA), which are Census 
administrative boundaries.  

 

3.3 Statistical modelling 

 

We applied the programming language R for all data analysis and visualization in this study. 
Specifically, the “INLA” package (Rue, et al., 2009) was used for Bayesian inference and 
“ggplot2” (Wickham, 2016) for data visualization. Other packages required included the 
spatial “sp” (Bivand, et al., 2011), “spdep” (Bivand & Piras, 2015) and “rgdal” package 
(Bivand, et al., 2018). 

 

3.3.1 Model specifications 
In total, four model specifications were defined for forecasting Virgin Media faults (Table 2). 
Since we had no prior knowledge of Virgin Media network faults, we applied stationary and 
non-stationary priors to assess which gave the highest forecast accuracy. We include space 
with the “best” time-series prior to explore whether spatio-temporal methods yield a higher 
forecast accuracy than just time-series models. An additional space-time interaction term is 
included in the fourth model, to explore whether this increases the forecast accuracy further. 
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Table 2. Description of the Model Specifications  

 

Model Description 

AR1 
An Auto-Regressive correlation of order 1 (AR1) is incorporated for 
modelling for temporal dependency between consecutive months.  

RW1 
A Random Walk correlation of order 1 (RW1) is modelled for, to account 
for temporal dependency between consecutive months. 

ST 

This Space-Time (ST) model incorporates spatial autocorrelation 
between neighbouring areal units, using a Conditional Autoregressive 
Prior (CAR) and is correlated between consecutive months using the 
preferred AR1 model.  

STI 
An additional Space-Time Interaction (STI) interaction term is added to 
the specified ST model, to account for any residuals that are 
unaccounted for. 

 

These model specifications were first applied to all network faults and then applied the top 5 
broadband network fault types, to explore the heterogeneity of faults (Table 3). This second 
analysis was conducted to explore whether any model uncertainty for forecasting all faults is 
associated with a specific fault type.  

 

Table 3. Description of the top 5 Broadband Network Fault Types 
 

Fault Type Description 

Customer 
Equipment 

This reflects any issues with the equipment of customers on their 
property. For example, a non-responsive modem, outdated software or 
faulty ADSL splitter. 

Education 
Education involves any reported broadband fault that do not reflect any 
software or hardware related issues but a lack of knowledge about how to 
operate their equipment. 

Radio Frequency 
This refers to any problem with the frequency ranges beyond the Virgin 
Media broadband specifications.  

Wiring 
This category reflects those faults relates to problems with copper and 
optical cable, network terminal points, main distribution frames and ADSL 
ports.  

Other 
This category represents all of the other fault types not listed above, 
including Unknown and No Access faults. Therefore, this category 
represents the largest proportion of faults. 
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All the model specifications include the covariates discussed in 3.2, which are modelled as 
fixed effects and the temporal and spatial main effects and space-time interaction term are 
modelled as random effects. Since the dependent variable is count data and skewed, we 
assume a Poisson distribution. To avoid the problem of identifiability in spatio-temporal 
models, each of the random effects include a structured and unstructured component (Knorr-
Held & Besag, 1998; Knorr-Held, 2000). We specify the most complex STI model using the 
example in (Blangiardo & Cameletti, 2015); 

 

 𝑙𝑜𝑔 (𝜇𝑡𝑗) =  𝛽0 +  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽4𝑥4𝑖 + 𝛽2𝑥2𝑖 + 𝛽5𝑥5𝑖 + γ𝑡 +  𝜙𝑡 + υ𝑖 + ν𝑖 +  δ𝑖𝑡, (25) 

   
where 𝛽0 is the intercept, 𝛽1, . . , 𝛽5 quantify the effects of the regression coefficients, 𝑥1, . . , 𝑥5 

represent the covariates modelled for on the dependent variable, γ𝑡 and 𝜙𝑡 represents the 

temporally structured υ𝑖 and ν𝑖  represent the structured and unstructured space effects and 
δ𝑖𝑡 represents the interaction between time and space. For the ST model, equation (25) can 

be rewritten by dropping the δ𝑖𝑡. For both the AR1 and RW1 model, equation (25) can also 

be rewritten by dropping υ𝑖 and ν𝑖 .  

 

All models were defined within a BHMF, where each level is modelled as a stochastic 
process. As discussed in section 2.3.3, the main challenge of Bayesian inference using 
MCMC algorithms is that applying complex is computationally demanding (Irvine, et al., 
2007). Instead, we use the R-INLA package to perform Bayesian inference, which is 
significantly more computationally efficient than MCMC algorithms (Rue & Held, 2005; Rue, 
et al., 2009). Therefore, this method allows us to fit complicated spatio-temporal models with 
the computational and time resources we have. We use the default simplified Laplace 
approximation when running INLA.  

 

3.3.2 Temporal main priors  
Since we are interested in forecasting based on past observations from the previous month, 
the first model includes the stationary AR process of order 1 (AR1) prior; 

 

 𝑋𝑖 = 𝑝𝑋𝑖−1
+  є𝑖𝑗 , (26) 

   
where the current value 𝑋𝑖  is a linear combination of 𝑝, times the most recent past values 

𝑋𝑖−1
, plus a noise term є𝑖𝑗. With the correlation |𝑝| < 1 and another restriction  є𝑖𝑗 ~ 𝑁(0, τ−1) 

the AR1 prior is a stationary process (Rue & Held, 2005). As the slope parameter 
approaches 1, the AR1 exhibits higher persistence or a larger contribution from the previous 
term, relative to the noise.  

 

The second model includes the none-stationary RW process of order 1 (RW1) prior; 

 

 𝑋𝑖 = 𝑋𝑖−1
+Δ 𝑥𝑖, (27) 

   
where the current value 𝑋𝑖  is the previous values 𝑋𝑖−1

plus an increment term Δ 𝑥𝑖. The 

restrictions for the AR1 prior include Δ 𝑥𝑖 ~ 𝑁(0, τ−1) and ∑Δ 𝑥𝑖 = 0. The RW1 model is a 
special case of the AR1 model, in which the slope parameter 𝜙 =1, so is a non-stationary 
process. The mean of a RW process is constant, but its variance is not. It also exhibits 
strong persistence, where past values have a big impact on current values. 
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3.3.3 Spatial prior 
To incorporate space within the selected time-series prior, we apply a BYM prior (Besag, et 
al., 1991), using the notation from (Blangiardo, et al., 2013); 

 

 υ𝑖 | υ𝑗≠𝑖~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑖 , 𝑠𝑖
2), (28) 

   
 

𝑚𝑖 =  
∑𝑗∈𝒩(𝑖)υ𝑗

#𝒩(𝑖) 
 and 𝑆𝑖

2 =  
𝜎𝑣

2

#𝒩(𝑖)
, 

(29) 

 

where #𝒩(𝑖)  is the number of areas which share boundaries with its neighbours. This prior 
decomposes the spatial effect into the sum of the structured υ𝑖 unstructured ν𝑖 components. 

The unstructured one is modelled using an exchangeable prior 𝑣𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2), to 
ensure that any random error within area 𝑖 is not modelled as spatial correlation, preventing 
any misleading estimates (Breslow, et al., 1998). Since little information is known about the 
prior distribution of faults, we use the default INLA minimally informative priors for the log of 
the unstructured effect precision; 

 

 log(𝜏𝜐) ~𝑙𝑜𝑔𝐺𝑎𝑚𝑚𝑎(1,0.0005), (30) 

 

and log of the structured effect precision; 

 log(𝜏𝑣) ~𝑙𝑜𝑔𝐺𝑎𝑚𝑚𝑎(1,0.0005). (31) 

 

Whilst it is reasonable to regard areas 𝑖 and 𝑗 as neighbours if they share a common border 

(Best, et al., 2001), denoted as 𝑖 ~ 𝑗, this is not appropriate when areal units are not 
distributed evenly in the study area (Earnest, et al., 2007; Wall, 2004; Wakefield, 2007). 
Since the MSOAs in this study area are not regularly arranged, we selected a distance-
based neighbourhood structure. We assume 𝑖 and 𝑗 are neighbours whenever 𝑗 falls within a 
critical distance band from 𝑖. More specifically, 𝑤𝑖𝑗 = 1 𝑤ℎ𝑒𝑛 𝑑𝑖𝑗 ≤ 𝛿, and 𝑤𝑖𝑗 = 0 otherwise 

where 𝛿 is a critical distance cut-off. We calculated the K-Nearest Neighbour (KNN) or 
minimum Euclidean distance between the MSOA centroids, to avoid isolates or observations 
with no neighbours and this information defined 𝛿. Finally, we specified a sparse precision 
weight, which is computationally efficient because they are specified entirely through 
neighbourhood structures and not the full covariance.  

 

3.3.4 Space-time interaction term  
We specify a non-parametric type II space-time interaction δ𝑖𝑡 term, which combines the 
structured temporal main effect γ𝑡 and the unstructured spatial effect υ𝑖 (Knorr-Held, 2000). 
We favour a non-parametric term because a linear time trend (Bernardinelli, et al., 1995) 
does not accurately model the linear time-series process of faults (Schrödle & Held, 2010). 
The parameter vector 𝛿 follows a Gaussian distribution with a precision matrix given by 
𝜏𝛿𝑹𝛿, where 𝜏𝛿 is an unknown scalar and 𝑹𝛿 is the structure matrix, identifying the type of 

TD and/or SA between the elements of 𝛿 (Blangiardo & Cameletti, 2015). We write the 

structure matrix of a type II δ𝑖𝑡 as; 

 𝑹𝛿 = 𝑹υ ⊗ 𝑹γ (32) 

 

Where 𝑹υ and 𝑹γ is the neighbourhood structure specified by the selected time-series prior. 

This leads to the assumption for the 𝑖th area the parameter vector {{𝛿𝑖1,…,𝛿𝑖𝑇
} has an 

autoregressive structure on the time component, independent from the ones of other 
MSOAs. The matrix 𝑹𝛿 has a rank of 𝑛(𝑇 − 1) for the selected prior. 
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3.5 Forecasting procedure  
 

For one step ahead monthly forecasts in INLA, we apply posterior predictive simulations to 
compute the linear predictor (Wang, et al., 2018). Firstly, the datasets used by INLA requires 
some pre-processing. For each forecasted month, we apply past observations from the 
previous months and add missing values or NA values for those observations in the month 
we want to forecast. For example, for January 2018, we use past observations from January 
to December 2017 and then add in NA values for the observations we want to forecast. To 
account for uncertainty in the estimated values of faults for each MSOA, we simulated from 
the posterior joint distribution of the model to obtain 1000 samples. In total, three forecasts 
was made from January to March 2018.  

 

3.5 Model selection  

Since we are primarily interested in comparing the forecast accuracy of the model 
specifications, we use the residual or difference between observed and forecasted faults. 
Therefore, we select the model based on the residual closest to zero. We are also interested 
in the model fit or how well a statistical model describes how well it fits a set of observations. 
We use the Deviance Information Criterion (DIC) to measure the model, where the smallest 
value has the best fit (Spiegelhalter, et al., 2002). We define deviance as;  

 
 

𝐷(𝜃) =  −2log (𝑝(𝑦|𝜃)) (33) 

 

In a Bayesian model, this is a random variable, so we use the expected deviance 
(𝐸(𝐷(𝜃))under the posterior distribution as a measure of fit. For counting parameters, we 

introduce effective number of parameters; 

 

 𝑝𝐷 = 𝐸(𝐷(𝜃)) − 𝐷(𝐸(𝜃)) = 𝐷̅ − 𝐷(𝜃̅) (34) 

 

And then DIC is: 

 𝐷𝐼𝐶 = 𝐷̅ + 𝑝𝐷 (35) 

 

Nevertheless, no model fit criteria is “good” and DIC has problems if the fitted posterior 
distribution is not well represented by its posterior mean (Zurr, et al., 2017). 
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4 Results 
 

This section begins by comparing the forecast accuracy and model fit of the four specified 
forecasting models to select a “best model” at the North West scale (4.1.1). We also 
compare the fixed effect estimates from the different models (4.1.2). The next subsection 
involves exploring the random (4.2.1) and fixed effects (4.2.2) of the preferred model. We 
then explore the spatial distribution of all faults at the MSOA scale (4.2.3). The preferred 
model was then applied to the top 5 most common network fault types, to assess whether 
any forecast uncertainty for all network faults is associated with a specific fault type (4.3). 

 

4.1 Model estimation results 
 

4.1.1 Model fit 
We begin by assessing the two time-series models. For all forecasted months, the model fit 
of the AR1 model was higher than the RW1 specification, as indicated by having the 
smallest DIC value (Table 4). The AR1 model generally had a higher forecast accuracy and 
the model took substantially less time to run. The only anomaly to the pattern was the 
forecasted month January, where the RW1 had the smallest residual. This was because the 
observed count of faults deviated away from the trend of decreasing faults from November to 
December 2017. Although, both models under-estimated the number of faults, the residual 
for the RW1 was slightly lower. We therefore conclude this pattern an anomaly and based on 
these results, we select the AR1 as the temporal prior for both spatial models. 

 

Figure 1. Comparison of the fitted faults for the North West study area, by each 
model forecast specifications 
 

Including the spatial effect significantly increased the model fit for all forecasted months 
(Figure 1) and had the highest forecast accuracy for March in addition to having the highest 
average forecast accuracy (Table 4). Whilst the model run-time of the ST model was higher 
than the AR1 specification, it was comparable to the RW1 one. Furthermore, adding the 
spatial effect allows the spatial distribution of forecasted faults at the MSOA level to be 
analysed, allowing further spatial analysis. For the fourth model specification, including the 
STI term significantly increased the model fit further and had the best model fit for all models 
(Table 4). However, this model had the lowest average forecast accuracy because the 
average residual was the furthest from zero. Additionally, the model run time for this 
specification was significantly the highest because it had the highest number of effective 
parameters.  
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Table 4. Forecasting accuracy for all Model Specifications 
 

  2017 2018 

 Nov Dec 
Jan Feb Mar 

  AR1 RW1 ST STI AR1 RW1 ST STI AR1 RW1 ST STI 

Observed 
     

7,641  
    

7,380  
      

7,920  
          

6,016  
         

5,923  
   

Predicted 
        

6,923  
      

7,228  
       

7,091  
      

6,770  
      

7,597  
        

8,011  
      

7,366  
      

7,070  
      

6,000  
        

6,181  
      

5,966  
       

5,771  

Residual (%) 
  -      

12.58  
-       

8.74  
-      

10.46  
-      

14.52  
      

26.28  
       

33.15  
      

22.45  
       

17.52  
          

1.30  
         

4.36  
         

0.73  
-       

2.56  

DIC 
      

58,270  
    

58,270  
    

42,278  
    

40,407  
    

63,876  
    

63,876  
    

46,228  
     

44,041  
    

68,872  
    

68,872  
    

49,998  
    

47,473  

PD 
              

25  
            

25  
          

652  
      

3,069  
            

26  
            

26  
          

655  
      

3,359  
            

27  
            

27  
          

658  
      

3,654  

Model run-time 
(secs) 

    
            

33  
           

198  
          

209  
         

1,116  
            

44  
           

188  
           

216  
       

1,243  
            

45  
          

236  
          

232  
       

1,460  

 
* Observations for November and December are included for explanatory purposes only 
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4.1.2 Fixed Effects 
We are also interested in how the parameters for each of the fixed effects between the 
different models. The widths of the 95% Credible Intervals (CI) for spatial models are 
significantly wider than the temporal models (Figure 2). This is because the spatial models 
for space also account for the extra residual component. In other words, there is higher 
uncertainty in the association between faults and covariates when space is considered. For 
example, education deprivation was significant for the AR1 and RW1 models but not 
significant for spatial ones because their 95% CI do not include zero.  

 

 

Figure 2. Comparison of the fixed effects (continuous covariates) for the different forecast 
model specifications for March 2018 
 

Overall, the results supports the value of incorporating the spatial effect using the BYM prior 
in addition to the main temporal component. Whilst the STI model had the highest model fit, 
the forecast accuracy was highest for the ST model. Therefore the additional computational 
demand of the STI model is not valuable and we prefer the less complex ST Model. The 
following sections explore the ST model further with the random and fixed effects and spatial 
distribution of the 662 MSOAs in our study area.  
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4.2 Model estimations for the Space-time model  
 

4.2.1 Random Effects  
In this section, we further explore the random effects for the ST model. By default, the 
posterior summaries of the precision 𝜏 are given for the random effects but we calculated the 
posterior standard deviation 𝜎 because they are easier to interpret, using the “Brinla” 
package (Wang, et al., 2018). We also calculated the proportion of variance explained by 
each of the random effects using the package “INLAOutputs”, so that both the structured and 
unstructured spatial components can be directly compared (Blangiardo & Cameletti, 2015). 

 

The results of this study illustrate that there is strong TD in network faults because the 
highest proportion of variance is explained by this component (Table 5). As expected, the 
temporal unstructured effect explains none of the variance in faults for North West England. 
Unexpectedly, the unstructured spatial component explains a higher proportion of variance 
than the structured one. Furthermore, there is a higher count of MSOAs that are not 
significant because the 95% CI include zero (Figure 3). Overall, most of the variance in faults 
is captured by the time-series prior but the spatial component is still significant. 

 

Table 5. Proportion of Variance Explained by the Random Effects Components in the ST 
model  
 

  Forecasted Months 

Random Effect Jan Feb Mar 

Spatially Unstructured 0.284 0.304 0.296 

Spatially Structured 0.001 0.001 0.001 

Temporal Structured 0.039 0.043 0.038 

Temporal Unstructured 0.000 0.000 0.000 

Rho 0.676 0.651 0.666 
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Spatial Random Effects in the Space-time Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Map (top) and Caterpillar graph (bottom) to visualise the significance of each of the areal units (MSOAs) in the Space-time model  
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4.2.2 Fixed Effects 
We included several covariates to measure the association of network faults with inequality 
and socio-economic factors. The results show that several covariates are significant 
predictors of faults, indicated as those where the 95% CI does not include zero (Table 6). 
Although the association between broadband usage and faults was not as strong as other 
covariates, the effect on faults is still significant. Moreover, the variability or standard 
deviation for this effect is very low and is significant for all model specifications in this study 
(Figure 2). Overall, MSOAs that have higher broadband usage exhibit lower faults, holding 
everything else constant.  

 

The proportion of elderly had a negative association with faults (Table 6). In other words, 
MSOAs that have a higher proportion of elderly population have fewer faults. However, this 
effect is not significant because the 95% CI include zero. Moreover, this covariate had the 
highest variation in the association with faults, defined by a high standard deviation. 
Interestingly, the proportion of elderly population was significant for the two models 
accounting only for TD and not for the spatial models. This is expected after accounting for 
the residual SA component (Table 7). There is a mixed association between income 
deprivation and reported faults for the forecasted months using the ST model (Table 6). For 
the forecasted month January, this relationship is positive but for February March there is a 
negative relationship. Moreover, this effect was not significant for all forecasted months 
because the 95% CI includes zero. Furthermore, the effects of income deprivation were only 
significant for the forecasted month January in the model specifications accounting for TD 
only (Table 7). The effect of education deprivation on faults was a positive one (Table 6). In 
other words, as faults increase levels of education decrease. However, this covariate is not 
significant after controlling for the other fixed effects because the 95% CI do not include 
zero.  

 

The Passive and Uncommitted IUC group had the highest positive effect on network faults 
out of the IUC groups (Table 6). This relationship was also significant because the 95% CI 
do not include zero. This group represent blue collar workers, who use the internet less than 
other IUC groups, but they use the internet during busy times and their usage is high 
bandwidth, consisting of social networking, gaming and online shopping. Therefore, they are 
more likely to feel the effects of bandwidth restrictions and more therefore more likely to 
report a fault or service beyond specified in their contract. The E-Withdrawn IUC group also 
had a high positive effect on faults (Table 6). This effect was also significant because the 
95% CI does not include zero. Interestingly, the socio-economic profile of this group is 
characterized by less affluent mixed ethnic groups and is associated by more deprived areas 
in the outer city (Alexiou & Singleton, 2018). Both IUC groups are characterized by 
individuals who are less engaged with the internet.  

 

The Settled Offline Communities group had the smallest effect on faults out of the IUC 
groups which was negative (Table 6). This is expected because this represents elderly White 
British, individuals who rarely access or do not access the internet. Interestingly, the second 
smallest effect on faults by IUC group is represented by the E-Professional group. This 
group is characterized by young urban professionals, who represent the highest levels of 
internet engagement. The E-Professional group is also highly educated and experienced 
users of the internet. However, both groups are not significant because the 95% CI contain 
zero.  
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Table 6. Space-time model Estimation results 
 

  Jan Feb Mar 

Variables Mean SD 2.5% 97.5% Mean SD 2.5% 97.50% Mean SD 2.5% 97.5% 

Intercept      2.286    0.411    1.476      3.093       2.276    0.424    1.440      3.109       2.265    0.415    1.444      3.075  

E-Professionals       0.135    0.326  - 0.505      0.776       0.154    0.327  - 0.488      0.796       0.117    0.328  - 0.527      0.762  

E-Veterans       0.636    0.302    0.045      1.230       0.669    0.303    0.075      1.264       0.650    0.304    0.054      1.248  

Youthful Urban Fringe      0.361    0.373  - 0.371      1.093       0.403    0.374  - 0.331      1.138       0.371    0.376  - 0.366      1.109  

E-Rational Utilitarian’s      0.302    0.312  - 0.310      0.916       0.330    0.313  - 0.284      0.945       0.293    0.314  - 0.323      0.911  

E-Mainstream      0.863    0.295    0.286      1.442       0.886    0.296    0.307      1.467       0.861    0.297    0.280      1.444  

Passive and Uncommitted      0.971    0.298    0.387      1.557       0.992    0.299    0.406      1.580       0.968    0.300    0.380      1.558  

Digital Seniors      0.754    0.324    0.119      1.390       0.777    0.325    0.140      1.416       0.750    0.326    0.110      1.391  

Settled Offline Communities -   0.065    0.491  - 1.029      0.898  -   0.044    0.493  - 1.012      0.923  -   0.099    0.495  - 1.072      0.873  

E-Withdrawn      0.894    0.315    0.277      1.512       0.907    0.316    0.288      1.528       0.882    0.317    0.260      1.505  

Education Deprivation      0.009    0.005  - 0.002      0.019       0.009    0.005  - 0.002      0.019       0.009    0.005  - 0.002      0.020  

Income Deprivation       0.047    0.825  - 1.574      1.666  -   0.001    0.830  - 1.631      1.626  -   0.115    0.835  - 1.755      1.523  

Elderly Population  -   1.104    0.966  - 3.001      0.790  -   1.134    0.970  - 3.040      0.770  -   1.127    0.976  - 3.045      0.788  

Broadband Use -   0.006    0.001  - 0.008  -   0.004  -   0.006    0.001  - 0.008  -   0.004  -   0.006    0.001  - 0.008  -   0.004  

Spatial (σ) - unstructured      0.706    0.018    0.674      0.745       0.732    0.024    0.690      0.782       0.737    0.023    0.693      0.783  

Spatial (σ) - structured      0.034    0.021    0.012      0.090       0.035    0.021    0.012      0.090       0.026    0.012    0.010      0.058  

Temporal (σ) - structured      0.232    0.081    0.132      0.443       0.246    0.087    0.138      0.471       0.238    0.075    0.139      0.428  

Rho for month      0.848    0.089    0.641      0.973       0.881    0.070    0.714      0.977       0.822    0.095    0.601      0.958  

Temporal (σ) - unstructured      0.010    0.007    0.004      0.029       0.010    0.007    0.004      0.029       0.011    0.007    0.004      0.028  

DIC   42,278       46,228       49,998     

PD         652                655                658        

Note: SD and σ represents standard deviation, bold represents covariates that are important at the 95% credible interval; DIC represents Deviance Information Criterion, PD represents 
Effective Number of Parameters 
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Table 7 Income Deprivation and Proportion of Elderly Population Covariates, by Model Type 
 

  Jan Feb Mar 

  Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% Mean SD 2.5% 97.5% 
 RW1 

Income Deprivation    0.279    0.110    0.064    0.494    0.199    0.104  - 0.005    0.403    0.121    0.100  - 0.076    0.317  

Elderly Population  - 1.055    0.133  - 1.317  - 0.793  - 1.140    0.126  - 1.388  - 0.893  - 1.136    0.122  - 1.375  - 0.898  

  AR1  

Income Deprivation    0.279    0.110    0.064    0.494    0.199    0.104  - 0.005    0.403    0.121    0.100  - 0.076    0.317  

Elderly Population  - 1.055    0.133  - 1.317  - 0.793  - 1.140    0.126  - 1.388  - 0.893  - 1.136    0.122  - 1.375  - 0.898  

  ST  

Income Deprivation    0.047    0.825  - 1.574    1.666  - 0.001    0.830  - 1.631    1.626  - 0.115    0.835  - 1.755    1.523  

Elderly Population  - 1.104    0.966  - 3.001    0.790  - 1.134    0.970  - 3.040    0.770  - 1.127    0.976  - 3.045    0.788  

  STI  

Income Deprivation    0.066    0.830  - 1.566    1.695    0.022    0.831  - 1.611    1.652  - 0.096    0.833  - 1.733    1.539  

Elderly Population  - 1.131    0.972  - 3.040    0.775  - 1.151    0.972  - 3.061    0.756  - 1.137    0.975  - 3.053    0.775  

*SD represents standard deviation and bold estimates represent those that are significant 
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4.2.3 Spatial distribution of faults 
This section describes the spatial distribution of faults at the MSOA scale in the study area. 
Firstly, faults tend to be higher in MSOAs distributed in urban areas than rural ones. 
However, this pattern is not straightforward and there is a clear “island effect” in city, where 
central business district and inner cities of Liverpool and Manchester have low faults, 
surrounded by MSOAs in the inner suburbs with higher faults (Figures 4:5). However, this 
structure is not present in MSOAs within towns in this study area.  

 

Figure 4. All observed (left) and by type network faults North West England (Jan 2018) 

 

 

Figure 5. All forecasted (left) and by type network faults North West England (Jan 2018) 
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As discussed, the forecast accuracy for February 2018 using all model specifications was 
the lowest. This is because the forecast was based on the previous months anomalous 
network fault count. Generally, there is a clear pattern of higher forecasted than observed 
faults across the whole study area (Figure 6:7). Unsurprisingly, the spatial distribution of 
observed and forecasted MSOA level faults in March 2018 matched the closest (Figure 8:9). 
For all months, observed faults tend to be highest for the Merseyside County. 

 

 

Figure 6. All observed (left) and by type network faults North West England (Feb 2018) 
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Figure 7. All forecasted (left) and by type network faults North West England (Feb 2018) 
 

 

Figure 8. All observed (left) and by type network faults North West England (Mar 2018) 
 

 

Figure 9. All forecasted (left) and by type network faults North West England (Mar 2018) 
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Forecast uncertainty was also calculated for the fitted values of each of the forecasted 
months, defined as MSOAs with a standard deviation in the third quantile or higher (Figure 
10). This was essential to identify which MSOAs have the highest variance away from the 
mean. As expected, model uncertainty was lowest for the forecasted month March and 
highest for February. Some MSOAs had high model uncertainty for all forecasted months, 
included those near Saint Helens, Wigan, South Liverpool and in-between Rochdale and 
Manchester. This is further supported by Figure 11, which shows that the highest probability 
of MSOAS exceeding the threshold of 15 faults matched a similar spatial distribution as 
Figure 10.  
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Figure 10. Areal Units (MSOAs) with the highest forecast uncertainty for the Space-time model 
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Figure 11. Probability of areal units (MSOAs) with forecasted network faults exceeding 15 faults or the third quantile for the Space-time model 
 



38 | P a g e  

 

4.3 Model estimation results for the Space-time model, by broadband fault types  
 

In this section, we present the results from the analysis of network fault types. Due to the 
anomalous observed faults in January 2018, the model significantly overestimated the 
forecast for February 2018 (Table 8). By applying the selected ST model to the top 5 
network fault types, we found that all network fault types were overestimated but most 
significant for Customer Equipment faults, with the highest residual. This suggests that the 
low forecast accuracy for all network faults in February 2018 is associated a significantly 
higher count of Customer Equipment faults in January. Furthermore, this fault type was 
associated with a higher count of faults in Merseyside (Figure 6:7). 

 

Table 8. Space-time model estimation results: Top 5 Broadband Network Fault Types 

 

  
Customer 
Equipment 

Education 
Radio 

Frequency 
Wiring Other 

Jan 

 Observed        1,645.00         703.00       1,175.00        689.00      3,653.00  

 Predicted        1,505.75         677.70          938.11        594.00      3,162.61  

 Residual (%)  -           8.47  -          3.60  -         20.16  -       13.79  -       13.42  

 DIC      21,392.65     19,000.35      22,903.48    18,331.82    33,860.09  

 PD          574.31         468.47          515.59        433.66        622.57  

 Feb  

 Observed        1,067.00         668.00       1,035.00        571.00      2,699.00  

 Predicted        1,573.00         708.26       1,055.33        633.61      3,373.94  

 Residual (%)            47.42             6.03              1.96          10.97          25.01  

 DIC      23,411.19     20,966.11      25,187.13    20,117.45    37,082.57  

 PD          578.80         473.44          529.57        444.26        627.61  

 Mar  

 Observed        1,042.00         951.00       1,080.00        608.00      2,576.00  

 Predicted        1,082.44         632.90          974.63        560.74      2,651.99  

 Residual (%)              3.88  -        33.45  -           9.76  -         7.77            2.95  

 DIC      25,186.67     22,679.08      27,300.12    21,783.50    40,065.42  

 PD          582.84         484.51          539.06        453.65        631.85  
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4.4 Summary  
 

The main findings of this study is that the ST model had the highest average accuracy for 
forecasting Virgin Media network faults (Table 4). Including the STI term improved the model 
fit further but did not increase the forecast accuracy. Including the spatial effect allows an 
analysis of the spatial distribution of network faults at a much finer scale than conventional 
time-series models. Although including space with the stationary time-series prior improved 
the forecast accuracy, the highest proportion of variance was still explained by the temporal 
prior. Whilst the model fit of the STI model was the highest, the forecast accuracy was the 
lowest for this model. These results supports the value of incorporating the spatial effect in 
addition to the main temporal component. 

  

For the forecasted month February 2018, all models overestimated network faults due to the 
anamalous faults in January (Table 4). This highlights the stochastic nature of faults and the 
autoregressive characteristic of 𝑡−1, where forecasts are based on the previous months 
broadband fault counts. The analysis of faults types showed that this was related to 
Customer Equipment faults because the faults decreased significantly from January to 
February (Table 8). Furthrmore, there was a clear spatial distirbution of Customer Equipment 
faults being higher in the Merseyside area (Figure 4:9). 

 

The significance of the relationship between some fixed covariates changed by adding the 
spatial effect. This included the proportion of elderly and income deprivation, however 
broadband usage was significant for all model specifications This was because the 95% CI 
was wider for the spatial models, for this residual component. Out of the IUC groups, 
network faults and both the Passive and Uncommitted and E-Withdrawn groups had the 
highest positive association, which was significant (Table 6). These groups represent blue-
collar workers and those in more deprived neighbourhoods. In contrast, the Settled Offline 
Communities and E-Professional group had the smallest effect on faults. Interestingly, these 
represent geodemographic groups who have the smallest and highest engagement with the 
internet but these effects were not significant. 
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5 Discussion 

 

We begin this section by discussing the main findings of this study and how they relate to the 
research aims and objectives (5.1). The second subsection (5.2) draws on these results and 
engages these findings with the wider literature. The next section explores the significance 
of results, as well as the limitations of this study (5.3). We finalise by providing a summary of 
this discussion and provide some recommendations for future research in this field (5.4).  

 

5.1 Main study findings 
We begin by restating the study aims and objectives. The aim of this study was to extend the 
time-series forecasting literature for network faults, by incorporating space. The objectives of 
this study were to; 

1. To evaluate whether incorporating space with conventional time-series priors gives a 

higher forecast accuracy of network faults, than just the time-series priors. 

2. Explore whether incorporating an additional spatio-temporal interaction temr in 

spatio-temporal models further improve the forecast accuracy of network faults  

3. Assess which broadband inequality and socio-economic factors are most related to 

network faults. 

4. To identify whether there is a spatial pattern of network faults in North-West England 

and how they change over time.  

 

Both spatial models had a significantly higher model fit than the temporal priors only (Table 

4) In other words the spatial models fitted the faults more closely than the AR1 and RW1 

prior. Whilst the STI model had the best model fit for all forecasted months, the ST model 

had the highest forecast accuracy. Nevertheless, the ST model didn’t have the highest 

forecast accuracy for all forecasted months, due to the anomalous January 2018 faults but 

had the highest average forecast accuracy. Interestingly, most of the variance in faults was 

captured through the main temporal prior but the variance captured by the BYM prior was 

still significant (Table 5). We must also consider the principle of parsimony or the model with 

the smallest number of parameters that adequately represent the underlying time series 

(Chatfield, 1996). This is because a simpler model allows the possibility to scale up the 

analysis to a larger study area. Overall, the results of this study suggest the value of 

incorporating space into the traditional time-series framework. 

 

We applied the ST model to network fault types to identify whether the anomalous January 

and February 2018 observations are associated with this pattern. In other words, to identify 

whether any difference between the observed and forecasted faults is associated with a 

network fault type. The most significant finding of this analysis was that Customer Equipment 

faults was significantly higher for January 2018 compared to the other months. Therefore, 

we conclude the anomalous results in January and February 2018 was associated with this 

network fault type.  

 

The proportion of elderly represented a negative association with network faults but was not 
significant. Likewise, the Settled Offline Community IUC group, which also represents retired 
White British, who reside in semi-rural areas have a negative but smaller association with 
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faults. However, these associations was not significant because the 95% CI included zero. 
Conversely, the Passive and Uncommitted group, which represents semi-skilled and blue-
collar occupations who live in the suburbs had the positive association with faults, which was 
significant. Interestingly, broadband usage was significant for all model specifications, 
despite having a small, negative association with network faults (Table 6). In contrast, 
income deprivation had a small positive association, which was not significant for all model 
specifications.  

 

Another advantage of incorporating space with time-series models is analysing the spatial 
distribution of network faults at a finer scale than the regional scale. For example, there is a 
clear pattern of Customer Equipment related faults being significantly higher in the 
Merseyside area relative to the rest of the study area (Figures 4:9). This could be due to 
regional differences in broadband packages offered to customers and associated equipment 
or a way in which the faults are reported by the engineers. In contrast, the other fault types 
have less of a clear spatial pattern. We also calculated and visualized which MSOAs had the 
highest probability of MSOAs exceeding 15 broadband or the third quantile. For all 
forecasted months, MSOAs in urban areas tend to have a higher number of faults than rural 
ones. Specifically, MSOAs surrounding MSOAS in the outer city tend to have the highest 
number of observed faults. The inner cities of Liverpool and Manchester had significantly 
lower faults than surrounding MSOAs, representing an island effect.  

 

The e-Professionals and Youthful Urban Fringe IUC groups make up most socio-economic 
groups in the inner city (Figure 12). These represent a young socio-economic group, who 
are typically students and young professionals who are actively engaged with the internet. 
As expected, there is a low association between these groups and faults and this association 
was not significant. Another reason why faults in the inner city are lower is because network 
infrastructure is likely to be the most modern and subject to more routine maintenance to 
support the central business district. Moreover, Universities which are located in inner cities 
tend to have excellent network infrastructure and so MSOAs surrounding Universities piggy-
back onto the supporting University network infrastructure. However, it’s unclear whether it’s 
the characteristics of these socio-economic groups that influence faults or whether it’s the 
Geography that indirectly influences network faults. By this we mean that, certain areas 
attract certain socio-economic groups, whether this is related to job opportunities, financial 
restrictions, and closeness to certain ethnic groups or age structures.
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Figure 12. Internet User Classification (2018) for North West England, aggregated to the Middle Layer Super Output Area (MSOA)  
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5.2 Comparison of the main study findings to the wider literature 
 

The results of this study support the literature in incorporating space with time because the 
ST model had the highest forecast accuracy. However, the results also contradict the wider 
literature on STI models, which includes an additional spatial interaction term (Knorr-Held 
2000). Whilst the STI models had the best model fit, they had the lowest forecast accuracy. 
Model selection in these studies are generally based on just the model fit of known 
observations. Instead, we are interested in achieving the highest forecast accuracy of 
network faults with unknown quantities or one step ahead forecasting. The results of this 
study also support the results of (Deljac, et al., 2011), where monthly faults was best 
forecasted using a stationary time process.  

 

By including several covariates from the literature, we explored whether there was an 
association with network faults. Firstly, broadband usage was significant for all model 
specifications, with a negative association (Figure 3). In other words, as the number of faults 
increase, broadband usage decreases. Furthermore, the association between levels of 
income and faults was only significant for the forecasted month January 2018in the model 
specifications accounting for TD only (Table 7). Interestingly, the association between the 
proportions of elderly was significant for just the temporal models but these associations was 
not significant for the models accounting for space. 

 

The previous subsection (5.1) highlighted there is a spatial inequality of network faults, which 
supports the literature. For example, network faults tends to be higher in urban areas than 
rural ones, supporting the digital divide in the literature. As already discussed, the inner city 
is characterized by a higher proportion of young students and working professionals, where 
there is a lower count of faults, supported by an excellent network infrastructure. In 
comparison, the outer city is characterized by both E-withdrawn and E-mainstream IUC 
groups, who represent lower income and an ethnically diverse group, where the network 
infrastructure is not as well developed. Although spatial inequalities exist, it’s unclear 
whether it’s the characteristics of socio-economic groups that influence network faults or 
whether it’s the local Geography or network infrastructure. 

 

5.3 Significance and limitations of this study 
The main finding of this study was that incorporating space with conventional time-series 
priors yields a higher forecast accuracy and model fit than just accounting for TD. The 
significance of this approach is that it allows one to simultaneously apply one step ahead 
monthly forecasts to the whole study area, as well as analyse the spatial distribution of faults 
at a MSOA scale, a significantly finer scale and how they change over time. This spatio-
temporal areal modelling approach could be extended to other applications of forecasting. 

 

One of the limitations of this study is that this methodology was only applied over a short 
time period of three forecasted months, so there is a need to conduct the same methodology 
over a longer period. More specifically, these results represent the seasonality of winter, 
which are likely to be significantly different from summer. Additionally, all the data sources in 
this study was aggregated to the MSOA scale, which was selected as a compromise 
between level of detail and time taken to run the most complex STI model. Although 
aggregation was an important part of the research design, to ensure customer 
confidentiality, information is lost. Therefore, future studies should apply smaller areal unit 
scale such as the LSOA level in ST modelling. On the other hand, it would also be useful for 
Virgin Media to apply the ST model with MSOAs units over a larger study area such as North 
England, to analyse the distribution of faults over a larger scale.  
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5.4 Summary 
This study has shown the value of incorporating space with conventional time-series 
methods. However, it’s worth noting that this requires the forecaster to understand GIS and 
spatial analysis. For example, a misspecification of the neighbourhood structure for the BYM 
prior could yield very different estimates. It would be interesting for future studies of 
forecasting faults to experiment with different priors and specifically the spatial one because 
the spatial structured component did not explain much of the variance in network faults. 
Furthermore, (Lee & Mitchell, 2012) proposed a method for capturing more localized spatial 
structures as an alternative to the single global level of spatial smoothing but at the time of 
this study, only a limited number of spatial priors can be implemented in INLA. We also 
recommend Virgin Media to conduct a separate analysis, to examine why Customer 
Equipment network faults were significantly higher for January 2018 than the other 
forecasted months. 
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6 Conclusion 
 

This study developed a new method for one step ahead, monthly forecasting of network 
faults, by extending the conventional time-series approach by combining spatial statistics. 
Accurate forecasting of broadband faults with a high level of accuracy is important for budget 
purposes, operational efficiency and minimizing customer churn. We compared the forecast 
accuracy of four model specifications, two which accounted for just a stationary and non-
stationary time process, another included space and another included a STI term (Table 1). 
We adopted a BHMF to account for the different levels of uncertainty, which was achieved 
using the computationally efficient R-INLA package. 

 

The results of this study support the value in incorporating space with time together in a 
hierarchical structure because the ST model had the highest forecast accuracy. However, 
the results also contradict the wider literature on STI models, which also include a spatio-
temporal interaction term (Knorr-Held 2000). Whilst the ST model didn’t have the highest 
forecast accuracy for other months, due to anomalous January 2018 network faults, the 
model had the highest average forecast accuracy. The less complex ST model also allows 
for easier interpretation of results and took significantly less time to run, than the STI model. 

 

We then applied the ST model to the top 5 network fault types over the same study area and 
period. This was to examine whether any of the low forecast accuracy for February is 
associated with a specific network fault type. This analysis showed that Customer 
Equipment faults was significantly higher in January than the other forecasted months, 
February and March 2018. We concluded that the anomalous results in January 2018 for all 
broadband faults were associated with this fault type. This could be related to different 
equipment’s used by customers, which are offered as part of different packages or a way in 
which the faults are reported by the engineers. We conclude that a separate study is 
required to understand what factors contributed to the differences between observed 
Customer Equipment faults in January and February 2018.   

 

The incorporation of space also allows the forecaster to identify how the spatial distribution 
of network faults changes over time at a much finer spatial scale than the common regional 
level analysis. We calculated that MSOAS with the highest probability of exceeding 15 faults 
was in Merseyside and Wigan. Similarly, a higher count of Customer Equipment faults are 
associated with MSOAs in North Liverpool, Saint Helens and Wigan. Moreover, the results 
support the literature on the digital divide between urban and rural areas, where generally, 
urban areas have higher faults. However, it was also found that network faults was lower in 
the inner city, surrounded by MSOAs in outer city and inner suburban areas with higher fault 
counts.  

 

Gaining insight into the relationship between network faults and different socio-economic 
groups is significant to identify market demands and the strategic placement of corporate 
resources to both prevent and mitigate future network faults. This is particularly important in 
the competitive market of superfast BSPs. As expected, the proportion of elderly had a 
negative association with faults. In other words, MSOAs with a higher proportion of elderly 
population have fewer faults. Furthermore, there is a low association between the e-
Professionals and Youthful Urban Fringe IUC groups and network faults. These represent 
areas in the inner city where faults are less likely. Conversely, there was a positive 
association for the Passive and Uncommitted IUC group and E-Withdrawn groups with 
network faults. The spatial distribution of these groups are associated with areas in the outer 
city and inner suburb, which represent low income, ethnically diverse socio-economic 
groups. 
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We have presented this forward-thinking methodology to explore whether introducing space 
can achieve higher forecast accuracies than conventional time-series forecasting of faults. 
The results support the wider literature on spatio-temporal modelling and highlights the 
limitations of conventional time-series forecasting approaches. Moreover, such a 
methodology could be extended to other forecasting. Therefore, based on the findings of this 
study, we suggest Virgin Media to explore this methodology further and other applications of 
spatial analysis. Whilst leveraging Geographic information within modelling approaches is 
still in their infancy, applying spatial analysis could give a competitive advantage over their 
competitors.
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Appendix 
 

We include a simplified R code we used to specifying the four different model 
specifications. This shows how we applied it to all broadband faults. The same 
principle is applied for forecasting fault types but not shown for parsimony in addition 
to all data visualizations, where the the R-package ggplot2 was used. 

 
 

# 1.0 Broadband Service Provider (BSP) data pre-processing 

# read BSP data  
BSP <- read.csv('./Data/NW.csv', stringsAsFactors = FALSE) # load data as 

characters, not factors  
# create new column with months only   
BSP$month <- format(as.Date(BSP$FAULT_DATE, format="%d/%m/%y"), "%m")  
# create new column with year only   
BSP$year <- format(as.Date(BSP$FAULT_DATE, format="%d/%m/%Y"), "%Y")  
# remove all LSOAs with NA values - 49 in total  
BSP1 <- BSP[!BSP$LSOA == "#N/A", ]  
# convert to character   
BSP1$month <- as.character(BSP1$month)  
BSP1$year <- as.character(BSP1$year)  
# change values for jan - mar 18 for identifiability later  
BSP1$month[BSP1$month %in% "01" & BSP1$year %in% "2018"] <- "13"  
BSP1$month[BSP1$month %in% "02" & BSP1$year %in% "2018"] <- "14"  
BSP1$month[BSP1$month %in% "03" & BSP1$year %in% "2018"] <- "15"  
# create count column   
BSP1$count <- 1  
# rename category  
names(BSP1)[8] <- 'Fault_cat'  
# subset columns for modelling   
BSP1 <- BSP1[c(8:12)]  
# aggregate by LSOA  
agg <- aggregate(count~ LSOA+month, data=BSP1,FUN=sum)  
# Aggregate data by MSOA - Fault count  
# find lookup LSOA-MSOA online  https://data.gov.uk/dataset/9b090605-9861-4bb4-

9fa4-6845daa2de9b/postcode-to-output-area-to-lower-layer-super-output-area-to-

middle-layer-super-output-area-to-local-authority-district-february-2018-lookup-in-

the-uk  
lookup <- 

read.csv('./data/Postcode_to_Output_Area_to_Lower_Layer_Super_Output_Area_to

_Middle_Layer_Super_Output_Area_to_Local_Authority_District_February_2018_L

ookup_in_the_UK.csv',stringsAsFactors = F)  
# subset only LSOA and MSOA columns  
lookup <- lookup[,c(3,8,9)]  
# rename columns  
names(lookup) <- c('Postcode','LSOA','MSOA')  
# subset columns for only LSOA and MSOA 
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lookup2 <- lookup[c(2,3)]  
# remove duplicated LSOAs  
lookup2 <- lookup2[!duplicated(lookup2$LSOA),]  
# merge lookup with 2017 data  
mer <- merge(agg,lookup2,by='LSOA',all.x=T)  
# check for non-matches  
sum(is.na(mer$MSOA))  
# check original count of faults against new df   
sum(mer$count)  
# aggregate by MSOA  
agg2 <- aggregate(count~ MSOA+month, data=mer,FUN=sum)  
# check original count of faults against new df   
sum(agg2$count)  
# load library to reshape a data frame by aggregated form  
library(reshape)  
# cast with aggregation - this ensures that all MSOAs in each month have a value - 

those with no observations = 0  
md <- as.data.frame(cast(agg2,MSOA~month,sum))  
#################  
# 2.0 Covariate data pre-processing & merge with BSP data  
## 2.1 INTERNET USER CLASSIFICATION GROUP - 2018  
# read csv file in   
iuc <- read.csv('./Data/iuc2018.csv')  
# select LSOA & GRP Group&Label  
iuc <- iuc[,c(2,4)]  
# change column names  
names(iuc) <- c('LSOA','IUC_group')  
# merge lookup with iuc data  
iuc <- merge(iuc,lookup2,by='LSOA',all=TRUE)  
# write function mode  
Mode <- function(x) {  
  ux <- unique(x)  
  ux[which.max(tabulate(match(x, ux)))]  
  }  
# aggregate   
iuc <- aggregate(IUC_group ~ MSOA,data=iuc,FUN=Mode)  
# merge fault type with lookup  
md <- merge(md,iuc,by='MSOA',all.x=T)  
## 2.2 INCOME & EDUCATION DEPRIVATION  
# read IMD data for England - CDRC  
imd <- read.csv('./data/imd2015eng.csv',stringsAsFactors = TRUE)  
# select LSOA and income deprivation rate only  
imd <- imd[,c(1,5,8,14)]  
# rename columns - LSOA and income dep rate  
names(imd) <- c('LSOA','IMD_score','Income_score','Education_dep')  
# merge lookup with 2017 data 
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imd <- merge(imd,lookup2,by='LSOA')  
# ed deprivation  
ed_dep <- aggregate(Education_dep ~ MSOA,data=imd,FUN=mean)  
# income rank  
income_dep <- aggregate(Income_score ~ MSOA,data=imd,FUN=mean)  
# merge fault type with lookup  
md <- merge(md,ed_dep,by='MSOA',all.x=T)  
# merge fault type with lookup  
md <- merge(md,income_dep,by='MSOA',all.x=T)  
## 2.3 Aged65+  
# Infuse 2011 population stats - MSOA - North West - Age  
age <- read.csv('./data/Data_AGE_UNIT.csv',header=TRUE,stringsAsFactors = 

FALSE)  
# remove first row  
age <- age[-1,]  
# convert columns to numeric  
age[,c("F105","F167","F180","F181","F182","F183")] <- 

as.numeric(as.character(unlist(age[,c("F105","F167","F180","F181","F182","F183")]))

)  
# add columns  
age$plus65 <- age$F105+age$F180+age$F181+age$F182+age$F183  
# calculate proportion of elderly  
age$eld_prop <- age$plus65/age$F167  
# subset columns  
age <- age[c(2,14)]  
# change name  
names(age)[1] <- 'MSOA'  
# merge fault type with lookup  
md <- merge(md,age,by='MSOA',all.x=T)  
## 2.4 Ofcom - data usage  
### Ofcom data - data usage by LSOA  
# read in data  
data_use <- read.csv('./Data/combined_data2.csv', stringsAsFactors = F)  
# merge lookup with data_usage  
mm <- merge(lookup,data_use,by='Postcode')  
# convert data usage to numeric  
mm$av_data_usage <- as.numeric(mm$av_data_usage)  
# get list of MSOAs in data  
rm <- md$MSOA  
# apply list to data use file to only include MSOAs in study site  
mm<- mm[ mm$MSOA %in% rm, ]  
mm2 <- aggregate(av_data_usage ~ MSOA, data=mm, FUN=mean)  
# aggregate to main data   
md <- merge(md, mm2,by='MSOA',all.x=T)  
# check for non-matches - NONE  
sum(is.na(md$av_data_usage)) 
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# 3.0 Spatial data wrangling   
## 3.1 Load Spatial shapefile & subset only MSOAs with VM faults  
# package for loading spatial information  
library(rgdal)  
# read MSOA shapefile   
NW <- readOGR('./infuse_msoa_lyr_2011_clipped.shp', stringsAsFactors = F)  
# check CRS - OSGB36  
proj4string(NW)  
# subset MSOA column from shapefile  
NW <- NW[,c(1)]  
# rename column  
names(NW)[1] <- c('MSOA')  
# create list of MSOAs in VM dataset  
rm <- md$MSOA  
# apply list to shapefile to only include MSOAs in study site  
NW_VM <- NW[ NW$MSOA %in% rm, ]  
# check study site  
plot(NW_VM)  
## 3.2 Create spatial weights for INLA  
# load package for creating spatial weights matrix   
library(spdep)  
# get centroid coordinates of df  
coords <- coordinates(NW_VM)  
# get nearest neighbour - minimum distance to have at least 1 neighbour   
knb <- knn2nb(knearneigh(coords, k = 1))  
# calculate maximum distance for each MSOA to have at least 1 neighbour   
dist <- unlist(nbdists(knb, coords))    
# show summary of distances  
summary(dist)  
# get maximum distance  
max_d <- max(dist)  
# calculate distance-based neighbours - specified distance  
dnb1 <- dnearneigh(coords, d1 = 0, d2 = max_d)  
## check plot  
plot(dnb1,coords)  
# create binary  matrix - by specifying style="B" - Binary is necessary for INLA to 

work ok  
adj <- nb2mat(dnb1, style="B", zero.policy=TRUE) # ensures matrix is computed, 

even if there are islands or no-neighbour areas  
# create spare matrix  
adj <- as(adj, "dgTMatrix")  
# 4.0 Modelling via INLA  
## 4.0.1 Create dataframe elements for INLA  
data.MSOA <-  attr(NW_VM, "data")  
# Order first based on the map  
order <- match(data.MSOA$MSOA,md$MSOA) 
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# ordered data  
data.or<- md[order,]  
# transform data in the right format for INLA  
# VM fault count  
y <- as.vector(as.matrix(data.or[,2:16]))  
# get spatial component  
MSOA<- as.factor(rep(data.or[,1]))  
MSOA1<- as.factor(rep(data.or[,1]))  
# month  
month <- numeric(0)  
for(i in 1:15){   
  month<- append(month,rep(i,dim(data.or)[1]))  
}  
# covariates  
iu <- as.factor(rep(data.or[,17]))  
ed <- as.numeric(rep(data.or[,18]))  
inc <- as.numeric(rep(data.or[,19]))  
eld_prop <- as.numeric(rep(data.or[,20]))  
av_d <- as.numeric(rep(data.or[,21]))  
# JAN  
# get length of all rows minus 3 months -662 MSOAs  
length(y) - (662*3)  
# apply one month of NA values  
yyy = rep(NA,662)  
# use length of rows minus 3 months + the NA values  
y_train1 <- c(y[1:(7944)],yyy)  
# same n months as observations  
month1 <- c(month[1:8606])  
# create INLA df for jan  
data1 <- 

data.frame(y=y_train1,MSOA=MSOA,MSOA1=as.numeric(MSOA),month=month1,m

onth1=month1, area.year = seq(1,length(MSOA)), 

MSOA.int=as.numeric(MSOA),month.int=month1, 

x1=iu,x2=ed,x3=inc,x4=eld_prop,x5=av_d)  
#FEB  
# get length of all rows minus 3 months -662 MSOAs  
length(y) - (662*2)  
# use length of rows minus 3 months + the NA values  
y_train2 <- c(y[1:(8606)],yyy)  
# same n months as observations  
month2 <- c(month[1:9268])  
# create INLA df feb  
data2 <- 

data.frame(y=y_train2,MSOA=MSOA,MSOA1=as.numeric(MSOA),month=month2,m

onth1=month2, area.year = seq(1,length(MSOA)), 



56 | P a g e  

 

MSOA.int=as.numeric(MSOA),month.int=month2, 

x1=iu,x2=ed,x3=inc,x4=eld_prop,x5=av_d)  
# see model output  
#MAR  
# get length of all rows minus 3 months -662 MSOAs  
length(y) - (662)  
# get number of MSOAs - to one month  
yyy = rep(NA,662)  
# use length of rows minus 3 months + the NA values  
y_train3 <- c(y[1:(9268)],yyy)  
# same n months as observations  
month3 <- c(month[1:9930])  
# create INLA df for mar  
data3 <- 

data.frame(y=y_train3,MSOA=MSOA,MSOA1=as.numeric(MSOA),month=month3,m

onth1=month3, area.year = seq(1,length(MSOA)), 

MSOA.int=as.numeric(MSOA),month.int=month3, 

x1=iu,x2=ed,x3=inc,x4=eld_prop,x5=av_d)  
## 4.2 RW1 model  
# run INLA  
library(INLA)  
# RW1 model 1 - jan   
r1 <- y ~ 1 + x1+x2+x3+x4+x5+  
    f(month,model='rw1') + # temporal structured component  
    f(month1,model='iid')  
system.time(rw1 <- inla(r1,family="poisson",data=data1,   
                             control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# get model output  
summary(rw1)  
# RW1 model 2 - feb  
r2 <- y ~ 1 + x1+x2+x3+x4+x5+  
    f(month,model='rw1') + # temporal structured component  
    f(month1,model='iid')  
system.time(rw2 <- inla(r2,family="poisson",data=data2,   
                        control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# get model output  
summary(rw2)  
# RW1 model 3 - mar  
r3 <- y ~ 1 + x1+x2+x3+x4+x5+  
    f(month,model='rw1') + # temporal structured component  
    f(month1,model='iid')  
system.time(rw3 <- inla(r3,family="poisson",data=data3,  
                        control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1))) 
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# get model output  
summary(rw3)  
## 4.2  AR1 model  
# AR1 model 1 - jan  
a1 <- y ~ 1 + x1+x2+x3+x4+x5+  
    f(month,model='ar1') + # temporal structured component  
    f(month1,model='iid')  
system.time(ar1 <- inla(a1,family="poisson",data=data1,  
                        control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# get model output  
summary(ar1)  
# AR1 model 2 - feb  
a2 <- y ~ 1 + x1+x2+x3+x4+x5+  
    f(month,model='ar1') + # temporal structured component  
    f(month1,model='iid')  
system.time(ar2 <- inla(a2,family="poisson",data=data2,   
                        control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# get model output  
summary(ar2)  
# AR1 model 3 - mar  
a3 <- y ~ 1 + x1+x2+x3+x4+x5+  
    f(month,model='ar1') + # temporal structured component  
    f(month1,model='iid')  
system.time(ar3 <- inla(a3,family="poisson",data=data3,  
                        control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# get model output  
summary(ar3)  
# 4.4 space-time model  
# run model - jan  
s1 <- y ~ 1 + x1+x2+x3+x4+x5+  
  f(MSOA1, model="bym", graph =adj) + # modellng structured + unstructured spatial 

components  
  f(month,model='ar1') + # temporal structured component  
  f(month1,model='iid') # temporal unstructured component  
   
system.time(st1 <- inla(s1,family="poisson",data=data1,   
                             control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# see model output  
summary(st1)  
# run model - feb  
s2 <- y ~ 1 + x1+x2+x3+x4+x5+ 
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  f(MSOA1, model="bym", graph =adj) + # modellng structured + unstructured spatial 

components  
  f(month,model='ar1') + # temporal structured component  
  f(month1,model='iid') # temporal unstructured component  
   
system.time(st2 <- inla(s2,family="poisson",data=data2,   
                             control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# see model output  
summary(st2)  
# run model - mar  
s3 <- y ~ 1 + x1+x2+x3+x4+x5+  
  f(MSOA1, model="bym", graph =adj) + # modellng structured + unstructured spatial 

components  
  f(month,model='ar1') + # temporal structured component  
  f(month1,model='iid')  # temporal unstructured component  
   
system.time(st3 <- inla(s3,family="poisson",data=data3,   
                             control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# see model output  
summary(st3)  
## 4.5 space-time interaction predictive model  
# run model - jan  
formula1 <- y ~ 1 + x1+x2+x3+x4+x5+  
  f(MSOA1, model="bym", graph =adj) + # modellng structured + unstructured spatial 

components  
  f(month,model='ar1') + # temporal structured component  
  f(month1,model='iid') + # temporal unstructured component  
  f(MSOA.int,model="iid", group=month.int,control.group=list(model="ar1"))  
   
system.time(jan <- inla(formula1,family="poisson",data=data1,   
                             control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# see model output  
summary(jan)  
#run model - feb  
formula2 <- y ~ 1 + x1+x2+x3+x4+x5+  
  f(MSOA1, model="bym", graph =adj) + # modellng structured + unstructured spatial 

components  
  f(month,model='ar1') + # temporal structured component  
  f(month1,model='iid') + # temporal unstructured component  
  f(MSOA.int,model="iid", group=month.int,control.group=list(model="ar1"))  
   
system.time(feb <- inla(formula2,family="poisson",data=data2,   
                             control.compute = list(dic = TRUE,config=TRUE), 
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                             control.predictor = list(link = 1)))  
# see model output  
summary(feb)  
# run model - mar  
formula3 <- y ~ 1 + x1+x2+x3+x4+x5+  
  f(MSOA1, model="bym", graph =adj) + # modellng structured + unstructured spatial 

components  
  f(month,model='ar1') + # temporal structured component  
  f(month1,model='iid') + # temporal unstructured component  
  f(MSOA.int,model="iid", group=month.int,control.group=list(model="ar1"))  
   
system.time(mar <- inla(formula3,family="poisson",data=data3,   
                             control.compute = list(dic = TRUE,config=TRUE),  
                             control.predictor = list(link = 1)))  
# see model output  
summary(mar)  
# 5.0 Modify results for easier to interpret outputs & account for uncertainty  
## 5.1 calculate standard deviation instead of the precision of the posterior 

distribution & explained variance for the "best   
# refernece @ Faraway 2018  
library(brinla)  
# apply function to best model  
bri.hyperpar.summary(st1)  
bri.hyperpar.summary(st2)  
bri.hyperpar.summary(st3)  
#references Blangiardo, Marta, and Michela Cameletti. Spatial and Spatio-temporal 

Bayesian Models with R-INLA. John Wiley & Sons, 2015.  
library(INLAOutputs)  
ExplainedVariance(st1, st2, st3)  
## 5.2 obtain samples from the fitted values to account for uncertainty  
#  number of samples  
nsample <-  1000  
# define function to obtain 1000 samples of each latent observation in Jan  
inla.sample <- function(x){  
  # get length of each of the estimated values   
  len = x$summary.fitted.values$mean  
  ## reproducible results  
  set.seed(1234)  
  inla.seed <- as.integer(runif(1)*.Machine$integer.max)  
  # apply number of samples to ar1 inla model   
  x = inla.posterior.sample(nsample, x, seed=inla.seed)  
  # create for loop to get the average of the latent components only for 1000 samples   
  for (nr in 1:length(nsample)){  
  # access all elements of the latent that are the fitted values of the linear predictor 

only  
  x = lapply(x, function(x) x$latent[1:length(len)]) 
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  # get average for the same row number in each of the 1000 simulated samples   
  x <- exp(colMeans(do.call(rbind,x)))  
  }  
  return(x)  
}  
# apply to all months in jan  
p_ar1 <- inla.sample2(ar1)  
p_rw1 <- inla.sample2(rw1)  
p_st1 <- inla.sample2(st1)  
p_sti1 <- inla.sample2(jan)  
# apply to all months in feb  
p_ar2 <- inla.sample2(ar2)  
p_rw2 <- inla.sample2(rw2)  
p_st2 <- inla.sample2(st2)  
p_sti2 <- inla.sample2(feb)  
# apply toall months in mar  
p_ar3 <- inla.sample3(ar3)  
p_rw3 <- inla.sample3(rw3)  
p_st3 <- inla.sample3(st3)  
p_sti3 <- inla.sample3(mar)  
   
# create dataframe to compare results  
par <- data.frame(y=observed_jan,fitted=ar1$summary.fitted,month=month1)  
# add simulated values to fitted values to compare   
par <- cbind(p_ar1,par)  
# access last 662 elemeents   
par <- par[7945:8606,]  
# compare the results inla.posterior.sample(), fitted INLA values & INLA  
sum(par$p_ar1)  
sum(par$fitted.mean)  
sum(par$y)  
#.... for each of the months 

 


