

Chi-Squared Test

What is the Chi-Squared Test?

The Chi-Squared Test is a statistical test used to determine whether there is a significant association between categorical variables. It is very useful in answering the question - "Is the frequency of these observations unusual or due to chance?".

Is my coin biased?

When to use a Chi-Squared test?

Use a Chi-Squared test when your data consist of **categorical** variables and you want to determine whether there is a significant relationship between them or whether the observed frequencies differ from what you would expect by chance.

Examples could include; testing whether a dice is fair, comparing patient satisfaction across clinics and frequency of dental conditions across age groups.

Assumptions of the Chi-Squared test?

The assumptions for using the Chi-Squared test are as follows:

- 1) Categorical data
- 2) Expected cell counts are sufficiently large (At least ten coin flips)
- 3) Independence of observations
- 4) Each observation must belong to only one category and must not influence others.
- 5) Random sampling

Different types of Chi-Squared test

Type of test: Chi-Squared goodness-of-fit test

Example: Testing whether a coin is fair by comparing observed counts of heads and tails to the expected 50/50 distribution.

Type of test: Chi-Squared test of homogeneity

Example: Comparing smoking status (non-smoker, light, heavy) across three different regions.

Type of test: Fisher's exact test

Example: Same as the Chi-Squared goodness-of-fit test but with lower sample sizes.

How to implement in RStudio

```
# Chi-Squared Test of Independence
chisq.test(table(df$categorical_var1, df$categorical_var2))
```

Interpreting results

Interpreting Chi-Squared results involves examining whether the observed frequencies differ from the expected frequencies under the assumption of no association.

The p-value indicates how likely it is to observe your data if the two variables are actually independent. A low p-value (commonly < 0.05) suggests that the observed pattern of counts would be very unlikely if the variables were unrelated.

The Chi-Squared Statistic (X^2) tells you how far your observed counts are from what would be expected by chance. Larger values means a bigger deviation from expectation and more evidence of a relationship.