
dx,dx’x
SD(4 CV(x)

S, C

Sa, Pa

Sn,, ,

Si, S2

A3, AC,Ab

A’, A(t)
‘4am, Asi

T, G

B, E
(1) Br,,, Em

P, 0, f
U, V, W
K, Kr
k, k’
K,, n
h, r
zi, z2

(3b)
(3c)
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Theoretical Aspects of One-Point Calibration:Causes and Effectsof Some
Potential Errors, and Their Dependence on Concentration
G.J. Kemp

The potential errors of the one-point calibration technique are
described mathematically. I examine the theoretical causes
and effects of analytical errors in absorbance and of errors in
determining calibration concentration, and discuss tech-
niques for minimizing their impact. The dependence of these
errorson the calibrationconcentrationand on the size of the
resultisconsidered,and some conclusions are drawn about
the choiceof calibrationconcentration.

Additional Keyphrases: statistics - analytical error

In various analyzers the principle of one-point calibration
is used. After the instrument is zeroed on reagent or diluent,
it then aspirates in turn a calibration standard of assigned
concentration C (see Table 1) and then a series of unknown
samples, which may be patients’ specimens or quality-
control sera. If the absorbances given by the standard and a
sample are A, and A5, respectively, then the sample concen-
tration, S, is estimated by

S = (As/A,) C

This method, particularly useful for the measurement of
analytes in complex matrices, has been used in a variety of
analytical systems, including peak-drawing continuous-flow

instruments,true equilibrium chemistries, and (with modi-
fication)some kineticmethods for the measurement of
concentrations or enzyme activities.

The validityof this procedure depends on the familiar
assumptions of zero blank, linear calibrationcurve, and
similarity of response to analyte in standards and in un-
known samples. Failure to meet these conditions is a source
of error; one example that has been discussed elsewhere (1)
is non-zero reagent blank. All these assumptions are tested
during method development, but it may be difficult to know
how large a deviation from ideal can be tolerated unless we
know how the overall error is related to its components.

In this paper I attempt to provide a theoretical analysis of
these errors, their effects on overall accuracy and precision,
and their dependence on the concentrations of sample and
standard.

Methods
Systematic errors can be expressed as either absolute or

relative quantities, and these can be represented by dx and
dxlx, respectively. Similarly,random errors can be ex-
pressed either absolutely as a standard deviation, SD(x), or
relatively as a coefficient of variation, CV(x). In what follows
dx/x and CV(x) will be understood as fractions, not percent-
ages.

The theory of error transmission (2) permits the bias and
imprecision in S (that is, the systematicand random error,
respectively) to be expressed in terms of those in its compo-
nents. From equation 1, and assuming all errors are small,
we have

dS/S = dAIAS - dACJAC + dC/C
CV2(S) = CV2(AS) + CV2(AC) + CV2(C)

Table 1. Symbols Used in This Paper

Absolute and relative bias (inaccuracy) in x.
Standard deviation and coefficient of variation of x;

squares of these expressed as SD2(x), etc.
Sampleand standardconcentrations.
Concentrationsofa sampleand ofthepreceding

sample, affected by carryover.
For unimodal distribution, the mean and the bot-
tom and topreferencelimits.

For bimodal distribution, the lower and upper mod-
al concentrations.

Absorbancesofsample,standard,and blank.
Absorbances corrected for blank, and measured at

time t, respectively.
Absorbances of sample at concentrations Sn,, S1,

etc.
Unimodal “relative width’; bimodal “relative sepa-

ration.”
Constant and proportional errors.
Maximum valuesofbaselineand slopedrift.
Nonlinear error constants.
General error constants.
Equilibrium constants.
“Analytical”constants.
Turbidity constants.
Carryoverconstantand reagent concentration.
Bichromaticwavelengths.

Iii examining the dependence of these errors on the values
of C and S, it is useful to consider two idealized distributions
of values of S for patients.

Unimodal distribution. Unimodal distribution is the “nor-
mal” distribution, with a mean value Sm, and it has a
conventional reference interval, whose top and bottom lim-
its (S and Sb) are, respectively, two population standard
deviations above and below Sm. We can characterize it by a
quantity T, which measures its “relative width.” By defini-
tion,

T = 2 (population standard deviation)/Sm (3a)

where the factor 2 is chosen to simplifysubsequent expres-

sions. From this, we can write the following:
T = (5, - Sb)!2 Sm
St = Sm (1 + T) and 5b = Sm (1 - T)

In most cases, equation 3b is the easiest way to calculate T,
and can never yield a value greater than unity. Many
analytes in clinical chemistry are roughly of this type, and
Table2 shows some examples,alongwith their T-values, as
calculated from this laboratory’s reference intervals.

Bimodal distribution. Bimodal distribution will be
thought of as two frequency peaks at concentrations S and
S2, where S2 is larger. We can characterize it by a quantity

(2a) G, which measures the “relativeseparation”ofthe peaks.
(2b) By definition,

G = (S2 - S)IS (4a)
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which we can write as follows:

S2=51-(1+G) (4b)



Table 2. TypIcal Values of S, and T for Some
Unimodal Analytes

Analyt.

a Forpseudo-bimodalanalytes the values of S2 and G are only examples.
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Na 139 mmol/L 0.04
CI 101 mmol/L 0.05
Ca 2.35 mmol/L 0.11
Protein 72 g/L 0.13
HC0 28.5 mmol/L 0.16
Albumin 43 g/L 0.16
K 4.25 mmol/L 0.18

In laboratories serving a renal unit, this distribution gives a
reasonable fit to measured concentrations of urea, creati-
nine, and phosphate. Certain other analytes, e.g., bilirubin,
glucose, and alkaline phosphatase, show a proportion of
values much higher than the reference interval. It may be
useful to think of these as “pseudo-bimodal” analytes, with a
very broad upper peak. Any bimodal analyte will of course
have a T-value for the “normal” peak; because this will
usually be the lower peak, then Sm = Si. Some values of T
and G are shown in Table 3. For the bimodal analytes
proper, 52 is a genuine second mode, whereas for the
“pseudo-bimodal” analytes, one or two representative sam-
ple values have been used to stand in for the second peak.

It may be useful to express errors in terms of concentra-
tions as well as absorbances. If the assumptions of the one-
point technique are valid, then A5 = k S and A, = k - C,
where k is an analytical constant. This includes information
about sample dilution, dialysis fraction, the stoichiometry of
the analytical reaction, and the absorbance of the final
colored product. -

Errors in Calibration Concentration
We need to know how errors in the calibration concentra-

tion are likely to depend on its value. The systematic error,
dC/C, has four components:

(a) Deterioration or loss of analyte during use or storage.
(b) Evaporation of matrix during use or storage.
(c) Gravimetric and dispensing errors during vial ifiling.
(d) Volumetric errors during vial reconstitution.

In the increasingly rare case of calibration with pure
aqueous standards, errors (c) and (d) are replaced by the
gravimetric and volumetric errors involved in the prepara-
tion of stock solutions and working dilutions.

Errors (b), (c), and (d) will all give rise to relative bias,
which is independent of the value of C. Error (a) will also do
so if the decay or loss process obeys first-order kinetics, as it
well may. The total bias, dC/C, is therefore likely to be
independent of C.

Table 3. Typical Values of Sm(S1), S2, T, and G
for Some Bimodally Distributed Analytes and

Pseudo-Bimodal Analytesa
Analyt. Sm (Si) I Aox. 52 Ap)IOx. G

Bimodal

Phosphate 1.1 mmol/L 0.55 2 mmol/L
Urea 5.8 mmol/L 0.47 25 mmol/L
Creatinine 78 mol/L 0.55 900 /Lmol/L

Glucose 4.5 mmol/L
(fasting)

0.51 15 mmol/L 2

Alk. phosphatase 64 U/L 0.66
30 mmol/L
800 U/L

6
12

Bilirubin 11 mol/L 1.0 50 molfL
250 tmol/L

4
22

Pseudo-bimodal

These factors also contribute to imprecision: deterioration
and evaporation act “within vial,” and ifiling/reconstitution
errors act “between vials.” The overall within- and between-
vial imprecision is therefore likely to be independent of C.

Errors in Measured Absorbance
These are of two kinds: photometric and analytical. Photo-

metric absorbance errors have been comprehensively exam-
ined in ref. 3. Their dependence on A is complex, and they
will not be discussed here. If necessary, a photometric term
can be added to any of the error expressions derived below.

Analytical absorbance errors are those due to partial
failure to fulfill the necessary conditions of the one-point
technique, and the possible types of error will be discussed
separately.

Constant Errors

Here a constant increment, with mean B and population
standard deviation SD(B), is added to the true absorbance. It
follows that the resulting errors in A are given by

dA/A = B/A and CV(A) = SD(B)IA (5)

Examples of this type include the errors due to baseline drift
(4), sample or reagent blank (1), and nonspecificity.

Another interesting case is that of uncorrected carryover
(5).In a unimodal patient distribution each sample is
preceded, on average, by samples with a mean concentration
and standard deviation equal to those of the parent popula-
tion. If h is the carryover constant, then the absorbance, A5’,
given by a sample whose true absorbance is A9, will on
average be

A8’ = A8#{149}(1 - h) + h-A5,,, (6a)

The resulting average bias is given by

dA/A=h(An,,,/A5-1)=h-(S,,JS-1) (6b)

Variation in A9’ will arise as a result of population variation
in the absorbance of the preceding sample. From equation
6a we can calculate the resulting standard deviation,
SD(AS), for any given S:

SD(A5) = h - (standard deviation of preceding absorbance)

= h - k - (population standard deviation) (6c)

From the definition of T, we can express this as

SD(A8) = ‘/2hkSmT = ‘/2hAsmT (6c1)

and so

CV(A8) = #{189}hTAsm/As = #{189}hTSm/S (6e)

Proportional Errors

Here the true absorbance is multiplied by a factor (1 + E),
where E is a mean value taken from a population whose
standard deviation is SD(E). The resulting errors in A are
given by

dA/A = E and CV(A) = SD(E) (7)

Examples of this type include volumetric errors [including

0.8 those due to sample viscosity (6), for nonprotein analytes],
3 slope drift (7), simple errors in the rate and extent of

11 dialysis, errors due to failure to reach equilibrium, and
certain types of peak-drawing errors in continuous-flow
systems.

Nonlinearity

In the previous two cases, the calibration curve remains
linear, but with an incorrect intercept and slope, respective-
ly. Of the many possible errors due to nonlinearity of the
calibration curve, two will be discussed here.



(14a)
(14b)

dS/S = E + dC/C
CV2(S) = SD2(E) + CV2(C)

(IS/S = #{189}Em+ dC/C
CV2(S) = (1/12) Em2

(16a)
(16b)
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Noncompletion errors. In equilibrium methods, these er-
rors result from the failure of the analytical reaction to go to
completion. They depend on the concentrations of analyte
and reagent, and on the equilibrium constant. They must be
distinguished from errors due to the failure to reach equilib-
rium, which depend on time and on the rate constant, and
which will usually give rise to proportional error.

In the simplest case, reagent and analyte react in a 1:1
ratio to form a colored product, proceeding in one step with
an equilibrium constant Kr. If the reagent and analyte
concentrations are r and S. respectively, it can be shown
that the resulting error in the measured analytical absor-
bance is given by

dA/A = -1/[(r-SYKrJ (r>S)

if we make the reasonable assumption that (1/Kr)2 is
negligible.

Product-dissociation errors. These errors are produced by
partial dissociation of the colored product into one or more
less strongly absorbing species. In the simplest case of a one-
step breakdown (with equilibrium constant K) into two
species, it can be shown that the resulting error in A is (for
small S) given by

dA/A = -M.K/(K + k’S) (Sb)

In this expression, M is a term containing the absorbances of
the colored product and its subproducts (so that if the
subproducts do not absorb, M = 1), and k’ relates the
concentrations of the original analyte and the colored prod-
uct.

General nonlinearity. Equations 8a and 8b can be put into
the following general form:

dA/A = -P/(Q + fA) (9a)

In this expression, P and Q are constants, and f is a
parameter that takes the value -1 for noncompletion errors
(so that the error increases with A), and + 1 for product-
dissociation errors (where bias decreases with increasing A).
This expressionisstillawkward, and so ifA/Q issmallwe
make a further approximation:

dA/A = -(P/Q) + A - (f. P/Q2) (9b)
How good are these general forms? Equation 9a is always

valid for noncompletion errors; it is quite good for dissocia-
tion errors if 4- k’ . S/Kr is less than 1, and not very bad if
this term is less than 2. Equation 9b is reasonably good if S/r
is less than 0.2 (noncompletion), or if 4 - k’ . S/K1, is less than
0.3 (dissociation); it is not very bad if these quantities are
less than 0.5 and 1, respectively. All these approximations
tend to underestimate dA/A. Because Kr is likely to be large
and K is not, these equations are likely to work best for
noncompletion errors.

Composite Errors

At fairlylow absorbances,where equation9b isvalid,we
can combine constant,proportional,and nonlinearerrorsto
find a general expression for dA/A. Gathering terms and
defining three new constants, we have

dA/A = U + V/A + WA

If all the constants are positive, then a minimum bias of U +

2 (V W)laisreachedatA = +(V/W)”2.Ifoneormoreofthe
constants is negative, then dA/A may reach zero at some
value of A.

At low A, the V-term predominates. As A increases, the
W-term increases, but the approximate equation 9b becomes
increasingly inaccurate, and must eventually be replaced by
9a to give

dA/A = U’ + V/A - P/(Q + f#{149}A) (lOb)

where U’ is a new constant.
If equation lOa holds, and if U, V, and Ware mean values

from populations with respective standard deviations of
SD(U), SD(V), and SD(W), then the imprecision in A is
given by

CV2(A) = SD2(U) + SD2(V)/A2 + SD2(W) -A2 (11)

Again, the V-term predominates at low A; then as A
increases, the W-term becomes larger until the approxima-
tion breaks down.

Finally, it is not uncommon for standards, and sometimes
samples, to be run in replicate. For any serum run j times,
CV2(A) is multiplied by 1/j while dA/A is left unchanged.

(8a) Errors in Calculated Concentration
With these expressions for errors in absorbance, we can

calculate the consequences for the accuracy and precision of
S. The constants U, V, and W may or may not be identical
for standards and samples. Standards are often animal sera;
they are usually elaborately processed, and they may even
be pure solutions, so it is perhaps to be expected that their
error constants will in fact differ from those of most human
serum samples. I will consider the various cases in turn.

Constant error. In the general case, if standards and
samples are subject to constant errors of B and B . (1 + q),

respectively, the resulting bias in S is given by

dS/S = B [(1 + q)/A9 - (1/A,)] + dC/C (12a)

of which the result given in ref. 1 is the special case where q
and dC/C are both zero. lithe CV of the blank absorbance is
independent of its size, then the imprecision of S is given by

CV2(S) = SD2(B) [(1 + q)2/A52 + (1/A)2I
+ CV2(C) (12b)

An interesting case is that of baseline drift after an error-
free calibration. If this drift is such that its size at any
sample is simply proportional to the cup-number, we can
calculate the mean bias for a sample inserted randomly into
a run. If the runs are fairly long, this is given by

(IS/S = dAdA8 + dC/C = V2Bm/As + dC/C (13a)

where Bm is the maximum drift, reached at the last sample
of the i-un. This calculated bias is the expected mean of a
long series of randomly inserted samples. The expected
standard deviation of that series can be calculated from first
principles, and measures the imprecision due to drift. When
the runs are fairly long, this is given by

CV2(S) = SD2(B)/A92 + CV2(C)
= (1/12) (B,,,/A5)2 + CV2(C) (13b)

Another special case is that of uncorrected carryover.
Usually this will only affect samples, and so, using the
earlier results,

dS/S = h . (S,-,,/S - 1) + dC/C
CV2(S) = (1/4) - (h - T)2 (5,,,/5)2 + CV2(C)

Proportional errors. It is reasonable to define the stan-
dards as showing no proportional error and so, using the

(lOa) earlier results,
(15a)
(15b)

One special case is that of slope drift after an error-free
calibration. If this occurs so that E is proportional to cup-
number, and if the run is fairly long, then working as before
we can calculate the resulting errors for a randomly inserted
sample:



(23a)
23b)

(21a)
(21b)
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where Em is the size of E at the last cup of a run.
Nonlinearity. If standards and samples are subject to the

same error, then

dS/S = (f P/Q2) (A8 - A,) + dC/C (17)

The expressions for imprecision, and for bias when the error
constants are not identical, can also be written if necessary.

Composite errors. With the earlier expressions for errors
in absorbance, we can write general equations for errors in
the calculated sample concentration, S (the values of the
error constants may of course be different for samples and
standards). The results of any combination of absorbance
errors can be derived from these equations, and the results
are usually obvious from the components. For example, if
both baseline and slope drifts occur as described, then

dS/S = 1/2(Em + Bm/As) + dC/C
CV2(S) (1/12) [Em2 + (Bm/As)21 + CV2(C)

Minimizing Errors by Technique
Several techniques can be used to minimize the effects of

some constant absorbance errors. A detailed treatment
would be inappropriate, but a few points are relevant here.

Sample Blank Measurement

The effects of turbidity (but not analytical nonspecificity)
can be removed by running a sample blank, measuring its
absorbance as Ab, and calculating the sample concentration

S = (A8 - Ab) . C/(A, - Ab) = (A8’/A,’) . C

If Ab is equal to the blank error, B, the error is eliminated.
Proportional and nonlinear errors may still exist. The latter
now depend on the corrected absorbance, A’. Photometric
errors still depend on the total absorbance, A.

It can be shown that the imprecision that results from the
use of a sample blank is

CV2(S) = CV2A8’) + CV2(A,’) + CV2(C)
+ 2 - SD2(Ab) . [(1/A8’)2 + (1/A,’)2] (20)

The improvement in accuracy is therefore paid for by a
decrease in precision, which may be significant at low
concentrations.

Bichromatic Analysis

Measurement of absorbance at two wavelengths, Z1 and
Z2, can be used to correct for sample turbidity (8). The
correction depends on an assumed value of K, which is the
ratio of the absorbances due to turbidity at Z2 and Z1. It is
known that K = (Z2/Z1)”, where n is a constant with quite a
large population standard deviation. As a result of this
uncertainty in n, K is subject to error:

dK/K = log(Z2/Z1) - (In
CV(K) = loge(Z2/Zi) . SD(n)

This has a complex effect on the total error in S for any
particular sample, but it may be difficult to ignore unless Z2
and Z1 are very close together.

Carryover Correction

When carryover is expected, a correction can be applied. It
is necessary, of course, to use the correct formula (5). Even
then, uncertainty in the carryover constant, h, is transmit-
ted to the corrected absorbance: if h is small, it can be shown
that the resulting uncertainty in S is approximately

CV2(S) = CV2(Sa) + CV2(h)
dS/S = dSdSa - dh/h

where S8isthe uncorrected sample concentration.
Even when h is known without error, its use can still lead

to increased bias or imprecision in S. If h is not negligible,
then

(IS/S = (dS - h dPa)/(Sa - h .

CV2(S) [SD2(Sa) + h2 . SD2(P8)]/(S8 - h - P8)2

where Pa is the uncorrected absorbance of the preceding
sample. If dS8/S8 = dPa/Pa, as it may well be, then dS/S =

dSai’Sa, and the carryover correction adds no extra bias.
However, if CV(S8) = CV(P8), which is also quite possible,
then

CV2(S) CV2(S8) (S2 + h2 - P82)/(S8 h - Pa)2 (24)

which is always greater than CV2(S8). In effect, use of the

‘18 carryover correction, even when h is known precisely, is a
(18b) source of imprecision in S. Once again, increased accuracy

costs precision.

Kinetic Methods

This is a large subject, involving a wide variety of
methodologies (9). I will discuss only one here.

The one-point calibration can be adapted to kinetic use by
making absorbance measurements twice, at times t1 and t2,
before equilibrium is reached. If A(t) stands for the absor-
bance at time t, then the sample concentration, 5, is
calculated as

S = C . [A8(t2) - A8(t1)]/[A,(t2) - A,(t1)I (25)

(19) This procedure eliminates constant error, and removes
noncompletion as a source of nonlinearity.

The imprecision in S is given by

CV2(S) = {SD2[A8(t1)] + SD2[A8(t2)]}/[A8(t2) - A5(t1)]2
+ {SD2[A,(t1)] + SD2[A,(t2)I}/[A,(t2) - A,(t1)12
+ CV2(C) (26)

The SD(A) terms should no longer contain any constant-
error component. However, the total imprecision may well
be larger than in the nonkinetic technique. This will depend
on what other errors are present, and on the size of the
absorbance changes; this in turn depends on C and 5, on the
analytical constant k, and on the interval t2 - t1.

Minimizing Errors by Choice of Calibration
Concentration

A laboratory has some control over the value of C, subject
to the availability of commercial sera, and so it will be
useful to consider the dependence of errors in S on C. In
what follows, dC/C will be ignored; if necessary, it can be
taken into account, but the equations become rather more
complicated. The unimodal and bimodal cases will be treat-
ed separately.

Unimodal Distribution
Zero bias is achieved when dAdAS = dAC/A,. When the

error constants are identical for standards and samples,
such is the case at S = C, and so for a unimodal distribution
the average bias is minimized by setting C equal tO Sm, the
population mean. It is interesting to estimate the resulting
bias at other parts of the distribution; one way to do this is to
calculate (IS/S at S and 5b the top and bottom limits of the
reference interval. Some expressions for these errors are
shown in Table 4; this also includes the case of drift errors,
which of course do not change with calibration concentra-
tion and therefore cannot be minimized by choosing C.

(22a) Notice that, when C is between St and Sb, the sum of the
(22b) absolute magnitudes of the biases at S and 5b is indepen-



Constant blank
Carryover
Nonlinearity
slope drift
Baseline drift

(B/km)T/(1 -1)
h.T/(1 -T)

-A= T f. /Q2

#{189}Br,,/A5m(1 T)

Table 4. BIas In S at S, Sb, and Sm, when C = Sm Table 5. Bias in S at S1 and S2 When C Is Optimal
Type of error dS,JSb dSn,ISm ds,/s (for Blank and Nonlinear Errors) and for Any C

Unequalblankerrors0
0
0

1/2B,,,/A

(B/km)T/(1 +T)
-hT/(1 +T)

T . f#{149}
#{189}Em

#{189}Brr,/Asm(1 + T)
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dent of C, and is given by

IdS/S + kiSb/Sbl = .A/AS, - dAJA8 (27)

A similar equation holds for any two boundary values of S.
Error constants can, of course, be different for standards

and samples, and drift is an extreme example in which
standards are not subject to error at all. In other cases,
where error constants differ, it may still be possible to make
the bias zero, but this will no longer be so at S = C.
Consider,for example, the case of nonidentical blank errors,
described by equations 12a and 12b. Bias is zero at C = S/(1
+ q); we can therefore minimize average bias by setting C
equal to S,,/(1 + q). If we do this, the resulting errors at S
and Sb are found by multiplying those of the identical-error
case (given in Table 4) by (1 + q). If we calibrate at C Sm,
regardless, we can calculate the resulting errors at 5m St,
and Sb:

dSm/Sm = B q/A
dS/S = B (q - T)/A,,. . (1 + T)
ClSb/Sb = B (q + T)/A (1 - T)

It may be useful to estimate the consequences for preci-
sion of particular values of C. If, for example, we have
identical blank errors, and calibrate at C = Sm, the impreci-
sions at 5m St, and 5b are given by

CV2(Sm) = 2- SD2(B)/A8m2 + CV2(C)
Cv2(s) = [SD(B)/A,,j2 - {1/[(1 + T)2] + 1} + CV2(C)
CV2(Sb) = ESD(B)/A,,j2 . {1/[(1 - 2] + 1} + CV2(C)

Bimodal Distribution

Here the problem is to apportion the inevitable error
sensibly between the two peaks at S and S2. Notice that, by
analogy with equation 27, the sum of the magnitudes of the
biases at S and S2 is independent of C, and is given by

)dS1/S11+ klS2/82 = klA821dA82 - dA81/A811 (30)

provided that C is between S and S2.
The general problem is to find C so that the size of the bias

at S2 is N times that at S, where N is some number to be
decided on after considering the clinical function of the
analysis. If dC/C is negligible, this value of C is found by
solving an equation relating the absorbance errors at Si,S2,
and C:

dAdA, = [(N - dA81/A81) + (dA/A)Y(N + 1)

For example, for nonidentical blank errors, as discussed

previously, this optimum value of C is given by

1/C = (1 + q) (N/S1 + 1/S2)/(N + 1)

and for simple nonlinear errors, as in equation 17,

C = (N S + S2)/(N + 1)

The errors resulting from this choice of C are set out in
Table 5.

It is interesting to calculate the result of calibrating at C
#{189}(S1+ S2)if the error is in fact of the constant type. In this
case

d51/S1 = (B/A81) [G/(G + 2) + q]

dS2/S2 = (B/A81) - Eq - G/(G + 2)}/(1 + G)

dS2/S2= -[B (1 + q)/A51J[N/(N+ 1)] [G/(G + 1)]
dS1/S1 = [B(1 + q)/1][1/(N + 1)][G/(G + 1)]

Nonlinearity

dS2/S2= If. A81/02] G [N/(N + 1))
dS1/S1= -[f. . 4/Q2] G [1/(N + 1))

Combined slope and baseline drift

dS2/S2= ‘/2Em + ‘/2Bm/Asl (1 + G)
dS1/S, = ‘/2Em #{247}#{189}Bm/Asi

In the case of a composite error, it may be difficult to find
an optimum value of C. It is worth noting that for some
errors (IS/S may reach zero at more than one C; for example,
if the bias in absorbance is as described by equation lOa, and
if the error constants are identical for samples and stan-
dards, then (IS/S is zero at C = 5, and also at C =

V/W-k2S.

Discussion
This paper provides a theoretical framework for under-

standing the “analytical” causes of bias and imprecision in
the one-point calibration procedure. The results can be used
in three ways.

#{149}To describe the consequences of known or suspected

(28) errors, and their dependence on C and 5, and to quantify
this if numerical data are available. This may help to decide
the appropriateness of a method for the one-point technique,
and to assess the need for special procedures to reduce bias.

#{149}To choose a calibration concentration that will minimize
average bias (for a unimodal distribution of patients’ re-
sults) or apportion it sensibly between the two sample peaks
(for a bimodal distribution). The most obvious answer may
well be correct, but if not we can calculate the consequences
of oversimplification. In the absence of some analysis of this
sort there is no rational basis for preferring any value of C to
any other.

#{149}To assist in method development by suggesting the kind
of information that needs to be collected, the way it should
be processed, and the actions that should be taken on the
results.

My thanks to Mr. B. Morris for helpful discussion of some of the
issues raised in this paper.
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