

SPECTROMETRY AT THE TEST BEAM LINE AT CTF3

M. Olvegård *, E. Bravin, F. Carra, N. Chritin, A. Dabrowski, A. Dallocchio, S. Döbert, T. Lefèvre (CERN, Geneva, Switzerland), E. Adli (University of Oslo)

Introduction

The purpose of the CLIC Test Facility 3 is to demonstrate the efficiency of the CLIC RF power production scheme, and the Test Beam Line (TBL), presently under commissioning, is a small scale version of the CLIC decelerator. The TBL must show efficient and stable RF power production over 16 consecutive decelerating structures (PETS), without beam blow-up. As the high intensity electron beam is decelerated its energy spread grows by up to 60%. A novel segmented beam dump for time resolved energy measurements has been designed to suit the requirements of the TBL. As a complement, a diffusive OTR screen is also installed in the same spectrometer line. The combination of these two devices will provide both a high spatial resolution measurement of both the energy and energy spread and a measurement with a nanosecond time response.

Segmented Beam Dump

A new segmented beam dump has been designed for time resolved spectrometry at the TBL

- Like segmented Faraday cup: incoming particles are stopped and the absorbed charge measured as a current. The segmentation enables a deduction of the energy spread. A fast sampling (~ns) is possible.
- FLUKA simulations study to the size and shape of the electromagnetic shower emerging from the interaction of the beam with matter.
- Penetration depth and multiple scattering of the particle depends on initial energy and material.
- High Z material means shorter and thinner segments
- The resolution of the detector has been optimized by balancing the segment horizontal width and the cross talk between adjacent segments.

Beam distribution from PLACET and detector geometry in FLUKA:

- Compute the net charge absorbed by each plate and reconstruct particle distribution.
- A comparison with PLACET distribution shows the ideal performance of the detector.
- Concentric collimator slits increase acceptance towards divergent beam - an improvement compared to older design with parallel collimator slits.

32 tungsten segments

- transverse width: 3 mm
- transverse spacing: 1 mm
- longitudinal thickness: 20 mm

Inermet collimator with 32 slits [high tungsten content]

- slit width: 400 μm
- longitudinal thickness: 100 mm

Particle distribution (rms):

PLACET: 1.89 cm FLUKA (a): 0.82 cm FLUKA (b): 1.97 cm

Mechanical implementation of the segmented beam dump

The Test Beam Line in CTF3

Spectrometry at TBL:

- detect high energy transient, due to full loading of cavities
- measure beam energy loss

 measure large intrabunch energy spread

Nº of PETS	Mean energy	Energy spread
#	< E >	σ/ <e></e>
1	144.9 (MeV)	1.04%
4	129.7 (MeV)	1.4%
8	109.5 (MeV)	2.2%
16	68.8 (MeV)	5.8%

Status and Results

Thermal and Mechanical Considerations

The high intensity beam in the TBL means a high thermal load on interceptive diagnostics. To protect the segments a multi-slit collimator has been designed. The collimator will be made of a material with high tungsten content, and will be cooled with water. Thus, cooling of the active segments can be avoided.

Finite Element Method thermo-mechanical analysis

Outlook

- More measurements using the OTR screen and the slit dump: characterize the two systems and study beam optics.
- Installation of more PETS before the end of 2010
- Manufacturing and installation of new segmented dump end of 2010

* Supported by the EU under contract PITN-GA-2008-215080.

Maja.Olvegaard@cern.ch

DITANET