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What is CTF37?

Brief description of CTF3 and its purpose

m Test accelerator at CERN to demonstrate the feasibility of the CLIC concept

m Test PETS (Power and Extraction Structures) at the nominal gradient and pulse
length (100 MV /m for 70 ns)

m Generation of high charge, high frequency electron bunch trains by beam
combination in a ring using transverse deflectors

m Diagnostics tools needed for CLIC = Coherent Diffraction Radiation
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Coherent Radiation

Coherent Radiation can be used to obtain the longitudinal bunch profile

Coherent Radiatio!

m In particle accelerators, this is mostly Coherent Synchrotron Radiation (CSR),
Coherent Transition Radiation (CTR) and Coherent Diffraction Radiation (CDR)

S(w) = [Ne + Ne (Ne = 1) F (w)] Se(w)

m NS¢ (w) is the incoherent part
m N (Ne — 1)F(w)Se(w) is the coherent part

m S(w) is the signal , known from the experiment

m This can be obtained by using an interferometer

Se(w) is the single electron radiation , which should be predictable form theory
m N, is the number of electrons , known from the experiment
m Can be measured using the charge reading of a beam position monitor

m F(w) is the longitudinal bunch form factor , which is the measurement purpose.
m The bunch form factor is just the Fourier transform of the spatial charge distribution if

the transverse size is smaller than % (which is the case for CDR setup at CTF3).
= The longitudinal bunch profile can therefore be reconstructed
m Phase information can be obtained by Kramers-Kronig reconstruction analysis
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Diffraction radiation theory

Scattering of pseudo-photons
m Electromagnetic field of the moving charged particle considered as pseudo
photons

m The DR field (at some distance from the target) is a superposition of the real
photons created on the target surface

el
ey = 47r2 y (s, 9s) Tdysdxs (1)

m Need to substitute for the amplitude E;yy of every point source:

; ek cos g ﬁ
B o (2s,Ys) = e ( sin s )Kl (71)5 @

m ps = /a2 +y2, x5 = pssinis, and ys = ps cos s [(s, Ys) <= (ps, ¥s)]

m k = 27 /X is the radiation wave vector, A is the Backward DR (BDR) wavelength, v is
the charged particle Lorentz-factor, K is the first order McDonald function, and e is
the electron charge

Oh=i=c=l

m From a geometrical argument:

et _ &exp [% (:1;3 +yf) - — (1 f-&-yqr/)-ﬁ— — (5 +n )] 3)
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Simulation studies

Diffraction radiation simulations

Diffraction radiation tial distribution from a

ez 1
d?wPE 2 2 Y
s S0 = an?k%a? ||BPR| 4+ |EDR| :
dwd$ v v E
where EPT and EPT are the z- and <
y-polarisation components of DR. 2

m Simulations done for one single half target
m Parameters for the setup at CTF3 are used:

m Target dimension 40(60) X 40 mm

m Beam energy v = 235

m Distance from target to detector a =~ 2m
m Wavelength A depending on the detector

Future target configuration

m Second target will be added in 2010
\‘\ m Simulations will be carried out to

account for the second target

/
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Simulation studies

Diffraction radiation simulations

)

TR

max

Diffraction radiation spectra with I,

m Needed in the de-convolution of the
spectral information

B S(w) = N2F(w)Se(w)

tensiy (in units of |

Wavelength (in units of mm)

Intensity dependence on impact parameter £
(v = 235) i
m At a considerable distance from the beam f X

the signal level is still high

2 S S R PR T

Impact parameter (in units of mm)

® non-invasive measurements

]

Diffraction radiation spectra for different beam

energies

Intensiy (in units of |

m Zero-impact parameter

m For higher beam energies the intensity
increases

Wavelength (in units of mm)
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Simulation studies

Power estimation of CDR produced

Average power emitted per train by DR for DXP19

and zero impact parameter (h=0)

450F Bunch spacing
400F
350
300
250F
200
150F
100
50

m Bunch separation of 0.33ns and 0.66ns

m For a 2mm Gaussian beam the energy emitted
into the detector is 6.8 x 1079 .J

m The average power per train is 10.3W and
22.7W for 1.5GHz and 3GHZ operation

m For 2.5 x 10'° electrons per bunch the energy
contribution per electron is 1.7eV

Average power per train (in W)

I L L L L
1 1.5 2 25 3

Bunch length, o (in mm)

Average power emitted per train by DR for DXP19
and a non-zero impact parameter (h=10 mm)

250F

2001

m For a 2mm Gaussian beam the energy emitted
into the detector is 3.6 x 1079 .J

m The average power per train is 5.5W and
11.0W for 1.5GHz and 3GHZ operation

m For 2.5 x 10'° electrons per bunch the energy R

contribution per electron is 0.9eV Bunch length, o (in mm)

Average power per train (in W)
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Kramers-Kronig analysis

Kramers-Kronig analysis

The form factor obtained from the experiment gives directly the magnitude of the
form factor amplitude p(w) :

F(w) = §(w)5* () = p*(w) (4)
The complex form factor can be expressed as:
In §(w) = In p(w) + ith(w) (5)

where p(w) is the form factor amplitude and v (w) is the phase factor.
The phase factor ¢)(w) can be obtained using Kramers-Kronig relation:
2w [ In(p(x)/p(w
pw) = -2 [ g Do) (6)
7 Jo 2 —w
The normalized bunch distribution function can be determined as:
, 1 e wz
S() = = [ dwplw)cos (wiw) - Z) %)

mc Jo @
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Kramers-Kronig analysis

Reconstruction of a bunch with a double Gaussian charge distribution
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CDR lInstallation location
The CDR setup is installed in the Combiner Ring Measurement (CRM) line

Installation location in CTF3

m Layout of CTF3 with the
CRM line (schematic
layout at the top)

m Top view of the CRM line
with the CDR setup
(Device 11) installed
(schematic layout at the
bottom)

m Locations allows to
measure CDR and CSR
(CSR: Combiner Ring
(CR) dipole on - beam in
CR, CDR: dipole off -
beam in CRM line)

m For CSR insert target "
completely and use the
screen as a mirror
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CDR in the CRM Line

CDR assembly in the CRM line

View of the entire CRM line including the CDR setup

m Schematic drawing of the CDR setup (Stage 1) in the CRM line (on the left)
m Picture of the CRM line including the CDR setup (on the right)

m Vacuum valve to the right of the CDR setup
m OTR screen behind (to the left of) the setup

m Installation was done in 2 stages:

m Stage 1: Simply observed the radiation originating from the target
m Stage 2: Installed the interferometer
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CDR UHYV hardware

UHV hardware installed in the CRM line

CDR Vacuum hardware
m CDR UHV hardware (on the left):

m 2 six-way crosses containing the target(s) (2nd six-way cross for the 2nd target in 2010)

m 4D UHV manipulator to precisely rotate and translate the aluminised silicon target

m Quartz fused silica UHV window with a viewing diameter of 40 mm through which the
radiation is detected
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Interferometer system

The interferometer of the CDR experiment

Interferometer

m Installed the
interferometer on the
optical table earlier this
year

m Using a Kapton optical
film beam splitter at the
moment

m 4" aluminised broadband
mirrors

m High precision translation
stage(<0.3 um precision)

m Schottky Barrier Diode
detector
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Schottky Barrier Diode detector and DAQ

Schottky Barrier Diode detector used to detect the radiation originating from the target

Detector properties

Property Value Unit
Detector DXP08 DXP12
Frequency range 90 - 140 60 - 90 GHz
Wavelength 2.14 - 3.33 3.33-5 mm
Sensitivity (freq. dep.) 1530 - 400 ~ 700 mV/mW
Horn Antenna Gain 22.42 - 23.69 ~24 dB
Time response (FWHM) ~ 250 ~ 250 ps

v

Example CDR signal with BPM current

reading

m Current over the train is fairly
constant

Signal (in mV)

m CDR signal shows some variation

= Suggests bunch length changes

throughout the train S0 100200 300 400300 600 700
Time (in ns)
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Beam splitter

Calculations of the efficiency of Mylar and Kapton optical films

Efficiency calculations

2ART? (1 + A% — 2Acos6)

m FE = 2ROT() = =
(1 4+ A2R2 — 2ARcos6)?
Lo Lo
2 g g
. 2 15} 5
cosf; —ni4/1 — (isznei) 2 2
. R. — ni g, 5.,
s =
— (L g 2 -
cost; +mn14/1 (nl sv,n(),,) . .
2
1 ¢inB:)2 — ~050.
1-— (m:’l,nf)l) nycosb; , Lt
m R, = 2 4 6 5 10 12 14 16 18 20 2 4 6 5 10 12 14 16 18 20
P
Wavenumber (1/cm) Wavenumber (1/cm)

nl

1-— ( 1 sin@i)Q + nicosb;

m A =exp(—Kh/cosbhy)

4

Mylar beam splitter (top plots - Es & Ep)

B Best compromise between efficiency and
linearity = 50 um thick film

Efficiency

Kapton beam splitter (bottom plots - Es & Ep)

m Best compromise between efficiency and
|Ineaflty :> 50 lLLm thiCk fllm Wavenumber (1/cm) ‘Wavenumber (1/cm)
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DR & SR 2D Distributions

CDR and CSR signal dependences obtained with 2D (translational & rotational) scans

CDR signal dependence (horizontal polarization)

m Checked the signal level depending on the
target position and orientation

Radiation angle (in deg)

m Good agreement with expectation but some

distortion
m Distortion can be explained by background
caused upstream (wake-fields, CSR, etc.) | Jmpact Parameter (n mm)
CSR signal dependence rizontal polarization) é
m Also good agreement with expectation but Eﬂ
. . . 2
some distortion and additional offset |
R

m Distortion can also be explained by background
caused upstream

m Offset can be explained by the offset beam in
the bending magnet

2
Target Position (in mm)
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Backgrounds from downstream OTR screen and beam dump detected in the CRM line

Abs. position w.r.t. beam pipe centre (mm)
10 15 20 25 30
T T T T T

Screens

450

—— Screens out

400
350]

—— Screen Lin

— Screen 240

m Observed a large background from

Integrated intensity (V)

the OTR screen behind the setup 300
250

m High reflecting screen gives higher 200
background (photon yield o 150
reflectivity) 100f-
50

m Low reflecting screen gives a R
smaller background s

Impact Parameter (mm)
m Vacuum window of OTR screen

reflects light back towards the CDR
setup and reflection of light from
our six-way cross

beam

m Possible background from beam
dump e e

vacuum

window Jacuum

window
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y to cut off this back

m Used vertical corrector before the Abs. position w.r.t. beam pipe centre (mm)
CRM line to lower the position of = o0 B ——.
the beam (by about 8 mm) . 450 -

m Therefore able to lower the target E 4004 —— Sercen 1in
as well without touching the beam ; 3501 TR

. £ 3005

m Observing a convergence of the i‘;n 250k
signal levels for low impact E 200;
parameter 150;

m Target starts cutting of the 100f-
background as it is covering more soF-
of the vacuum window 056“Héw“w“w“w“w‘ls

=-Off-centre adapter flange, i.e. 15mm Impact Parameter (mm)

offset (currently manufactured at CERN
and installed in October)
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Theory & Simulation Setup &

First preliminary measurements with the upgraded system

First CSR & CDR measurements taken after the interferometer has been installed

Introduction

Rotation scan of CSR
m Horizontal polarisation
m DXPO08 detector (2.14 - 3mm)

m Target fully inserted (target edge
7 mm below the beam pipe center) 8

6

4

Intensity (a.u.)
N

-80 -70 -60 -50 -40 -30 -20

= Single peak as expected
—90
Rotation (1/10 deg)

=)

Rotation scan of CDR

m Vertical polarisation
m DXPO08 detector (2.14 - 3mm)
m Impact parameter of 10 mm

@

Intensity (a.u.)

= Single peak as expected
-100 -80 -60

-40 -20 o
Rotation (1/10 deg)
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First preliminary interferometric measurements

First CSR interferometric measurements taken after the interferometer has been installed

Interferometric measurements of CSR .

. .. sul
m Horizontal polarisation Y
5 I
m Target full inserted =
m 0.05 mm mirror step size ¢
~ T Banaterenee om ‘
Spectrum of CS
m Obtained the spectrum from the above 120
interferogram 100 ‘
m Next steps: & \\
m De-convolute the spectrum by the single w0 |
electron radiation, the detector spectral - © / \
response, gain horn spectral gain etc. [
m Extrapolate the spectrum to lower frequencies 20 / \
and higher frequencies to be able to apply .
. . [\] 1 2 3 4 5
Kramers-Kronig relation Froquency (Hz) <10"
m Use different detectors = increase spectral
coverage
v
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Conclusion & Outlooks

Conclusion

m Performed simulation studies for CDR setup at CTF3

m Investigations on Kramers-Kronig bunch length reconstruction method

m Carried out beam splitter efficiency calculations for Mylar and Kapton films to
find ideal thickness

m Installed the CDR setup in the CRM line

m Executed 2D translation & rotation scans and confirmed working order
m First interferometric measurements of CSR
u

First CSR spectrum obtained

v

m CDR interferograms

m Installation of the off-centre flange in October to cut off some of the backgrounds

m Install detectors on translation stage for more flexibility
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Questions ?

Maximilian Micheler

micheler@pp.rhul.ac.uk
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