Statistical modelling of sea level response to the changes in climate forcing

Svetlana Jevrejeva¹, Aslak Grinsted² and John Moore³

1. National Oceanography Centre, Liverpool, UK

2. Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Denmark

3. College of Global Change and Earth System Science, Beijing Normal University, China

Outline

- Motivation
- Objective
- Description of our model
- Results (reconstruction, projections by 2100, geoengineering)
- Conclusion

Motivation

Main components of sea level balance

Motivation

FIG. 9. Annual time series from HadCM3 experiments of global-mean sea level change due to thermal expansion and glacier mass loss.

Gregory et al, 2006, Journal of Climate

Objective

Using statistical model :

- to reconstruct sea level variability for the past 1000 years;
- to project sea level response to changes in radiative forcing by 2100

Model including a response time

$$S_{eq} = aF + b \quad (eq. 1) \qquad S=f(F)$$
Parameters:
 (τ, a, b, S_0)

$$\frac{\partial S}{\partial t} = (S_{eq} - S)/\tau, \quad (eq.2)$$

$$\begin{split} S_{eq} &= aF + b \quad \text{(eq. 1)} \\ \frac{\partial S}{\partial t} &= (S_{eq} - S) / \tau \,, \quad \text{(eq. 2)} \end{split}$$

Apriori constraints

- $\tau > 0$, $\tau < 5000$
- *b* > 0, *b*<5 m
- a > 0
- $|S_0| < 0.5 \,\mathrm{m}$

Inverse problem

Geophysical Research Letters

28 APRIL 2008 Volume 35 Number 8 American Geophysical Union

Did recent accelerations in global sea level rise start more than 200 years ago? Topography and stress patterns in the central Andes • Mantle downwelling causing the U.S. east coast to subside • Ozone hole recovery and climate change

Year A.D.

Empirical likelihood probability density functions of the model parameters

Results

'cbk_2003'- blue; 'gsz2003'- red; 'grt_2005'- dark green;

How good is our model?

Moore et al, 2010, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1008153107

Anthropogenic forcing dominates sea level rise since 1850

Jevrejeva et al. 2009, GRL

IPCC radiative forcing scenarios

Jevrejeva et al. 2010, GRL

Response to changes in natural forcings

A1B (2.4 degree)

Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703 101029/2010GL042947

Geoengineering?

Moore et al. www.pnas.org/cgi/doi/10.1073/pnas.1008153107

Moore et al. www.pnas.org/cgi/doi/10.1073/pnas.1008153107

Conclusion

- We use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings and estimate sea level rise by 2100.
- With six IPCC radiative forcing scenarios we estimate sea level rise of 0.6-1.6 m, with confidence limits of 0.5 m and 1.8 m by 2100.
- Projected impacts of solar and volcanic radiative forcings account only for, at maximum, 5% of total sea level rise.
- As alternatives to the IPCC projections, even the most intense century of volcanic forcing from the past 1000 years would result in 10-15 cm potential reduction of sea level rise.
- Substituting geoengineering for greenhouse emission control would be to load future generations with enormous risk