Liverpool Marine Symposium, 17 Jan 2011

Using climate models to project the future distributions of climate-sensitive infectious diseases

Prof. Matthew Baylis Liverpool University Climate and Infectious Diseases of Animals Department of Epidemiology and Population Health Institute of Infection and Global Health, University of Liverpool matthew.baylis @liv.ac.uk

Climate & climate change impacts on health 5,671 7,637 ~800,000

185

~65,000

13,650

~2,000,000

300

Climate and Infectious disease

Climate may affect:

- Spatial distribution of outbreaks: *where*?
- Timing of disease outbreaks: *when*?
- Frequency of disease outbreaks: *how often?*
- Intensity or severity of outbreaks: how bad?

Via effects on

- Pathogens: if free-living or outside of host
- Hosts: eg, immunity
- Vectors: eg mosquitoes, ticks etc
- Dynamics: eg contact rates
- Indirect effects: effects on other disease drivers

History of bluetongue (BT) in Europe

C. imicola

Current northern limit

before 1998

Northern limit

Factors underlying BT's emergence

- Spread of C. imicola across Mediterranean basin, and to north
- Transmission of BT viruses by indigenous *Culicoides* spp (*C. obsoletus*).

Purse B.V. *et al.* 2005

The need to link disease models to climate

Has it warmed enough...... Has it warmed too much.....

We need a model that:

- quantifies the expected amount of disease for a given climate; or •
- quantifies the expected change in amount of disease for a given change • in climate.

We can develop:

- a climate-driven model of disease spread •
- a climate-driven model of disease risk ٠

Disease models: the basic reproductive ratio, Ro

R₀:

- Defined as the average number of individuals infected by a single infected individual during its entire infectious period in a population which is entirely susceptible;
- Described as 'one of the foremost and most valuable ideas that mathematical thinking has brought to epidemic theory'*;
- There is an important threshold:
 - If $R_0 < 1$, infection will be cleared from the population
 - If $R_0 > 1$, the pathogen can invade the population
- The magnitude of R₀ indicates the risk of an epidemic arising from the introduction of a pathogen into a susceptible population;
- The proportion of a population that must be vaccinated to protect a population is $1 1/R_{0}$
- To control a disease outbreak, we need only reduce R₀ to below 1; maths will do the rest.

* Heesterbeek & Dietz, 1996)

Examples of R0 for a variety of diseases

Disease	Transmission	R0
Influenza	Airborne droplet	2-3
SARS	Airborne droplet	2-5
HIV/AIDS	Sexual contact	2-5
Mumps	Airborne droplet	4-7
Rubella	Airborne droplet	5-7
Polio	Faecal-oral	5-7
Smallpox	Social contact	5-7
Diphtheria	Saliva	6-7
Pertussis	Airborne droplet	12-17
Measles	Airborne	12–18
Dengue	Vector-borne	4-8
Malaria	Vector-borne	1-3000 (median 115)

Modelling R0 for bluetongue

Duration of viraemia in host (1/r) Ratio vector/host (m) Biting rate (a)

Competence (c)Survival (p) during the Length of extrinsic incubation cycle (n)

> **3** Survival (p) Biting rate (a)

$$R0 = \frac{m a^2 b p^n}{-r \ln(p)}$$

m: ratio vectors to host
a: biting rate
b: vector competence
p: daily survival rate
n: extrinsic incubation period
r:1/duration of viraemia in host

Mapping of BT's past, present and future R₀

Two host species

$$R0 = \frac{b\beta a^{2}}{p} \left(\frac{n}{p+n}\right) \left(\frac{m_{C}\phi^{2}}{r_{C}+d_{C}} + \frac{m_{S}(1-\phi)^{2}}{r_{S}+d_{S}}\right)$$

(Gubbins 2007)

- r:1/duration of viraemia in host (C,S) d: disease induced mortality rate (C,S)
- b: Prob. transmission of vector to host
- β : Prob. transmission of host to vector
- Φ: proportion of bites on each host species
- m: ratio vectors to host (C: cattle, S: sheep)
- n: 1/extrinsic incubation period
- a: biting rate
- p: vector mortality rate

AIM: assess spatial & temporal variations in BT RO under climate change scenarios

Constant in time and space

- Constant in time, varying in space
- > Varying in time and space

Feeding preferences

r:1/duration of viraemia in host (C,S)
d: disease induced mortality rate (C,S)
b: Prob. transmission of vector to host
β: Prob. transmission of host to vector
Φ: proportion of bites on each host species
m: ratio vectors to host (C: cattle, S: sheep)
a: biting rate
p: vector mortality rate

n: 1/extrinsic incubation period

FAO: data set of livestock densities

Vector and host densities

r:1/duration of viraemia in host (C,S)
d: disease induced mortality rate (C,S)
b: Prob. transmission of vector to host
β: Prob. transmission of host to vector
Φ: proportion of bites on each host species
m: ratio vectors to host (C: cattle, S: sheep)
a: biting rate

- p: vector mortality rate
- n: 1/extrinsic incubation period

Models driven largely by temperature and precipitation variables

Predicted probability of occurrence

Predicted probability of occurrence

Virus transmission variables

Lab or field studies:

Temperature

Past and future climate

EU ENSEMBLES project

Developing a quality controlled, high resolution prediction system for climate change for Europe.

Three datasets used:

1960-2006: a newly available, high resolution (25 km) observed climate dataset: *European Climatic Assessment and Dataset program*.

1961 – 2000: Simulated Control experiment (*SimCTL*);
11 Regional Climate Model simulations. With external forcing, and forced at boundary by ERA-40

1961 – 2050: Simulated SRESA1B (*SimA1B*); 11 RCMs; forced at boundary by GCM and SRESA1B emission scenario

Seasonal R₀

Model outputs

Sensitivity analysis

Past and future trends in R₀

Simulated regional R0 changes

Conclusions

Bluetongue has emerged dramatically in Europe over the last 12 years;

Driving variation in R₀ using high resolution climate data allows the influence of climate on changing disease risk to be examined;

Many aspects of BT's emergence agree in space and time with model outputs, lending support to the belief that bluetongue's dramatic emergence is attributable to recent climate change.

With thanks to

University of Liverpool: Cyril Caminade Georgette Kluiters Andrew Morse

CIRAD/UMR TETIS, France Helene Guis Annelise Tran

CITA, Zaragoza, Spain Carlos Calvete Institute for Animal Health Simon Carpenter Simon Gubbins Philip Mellor Peter Mertens Lelia O'Connell Beth Purse

Funders Leverhulme Trust BBSRC EU

