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Climate & climate change impacts on health

Air quality

185

7,637

13,650

5,671 ~800,000

300 ~65,000 ~2,000,000

climate



Climate and Infectious disease

Climate may affect:

 Spatial distribution of outbreaks: where?

 Timing of disease outbreaks: when?

 Frequency of disease outbreaks: how often?

 Intensity or severity of outbreaks: how bad?

Via effects on

 Pathogens: if free-living or outside of host

 Hosts: eg, immunity

 Vectors: eg mosquitoes, ticks etc

 Dynamics:  eg contact rates

 Indirect effects: effects on other disease drivers



History of bluetongue (BT) in Europe



Factors underlying BT’s emergence

• Spread of C. imicola across Mediterranean basin, and to north

• Transmission of BT viruses by indigenous Culicoides spp (C. obsoletus).



Has it warmed enough........

Has it warmed too much.....

We need a model that:

• quantifies the expected amount of disease for a given climate; or

• quantifies the expected change in amount of disease for a given change 

in climate.

We can develop:

• a climate-driven model of disease spread

• a climate-driven model of disease risk

The need to link disease models to climate

to explain the observed emergence of BT?



Disease models: the basic reproductive ratio, R0

R0:

• Defined as the average number of individuals infected by a single 

infected individual during its entire infectious period in a population 

which is entirely susceptible;

• Described as ‘one of the foremost and most valuable ideas that 

mathematical thinking has brought to epidemic theory’*;

• There is an important threshold:

– If R0 < 1, infection will be cleared from the population

– If R0 > 1, the pathogen can invade the population

• The magnitude of R0 indicates the risk of an epidemic arising from the  

introduction of a pathogen into a susceptible population;

• The proportion of a population that must be vaccinated to protect a 

population is 1 – 1/R0;

• To control a disease outbreak, we need only reduce R0 to below 1; 

maths will do the rest.

* Heesterbeek & Dietz, 1996)



Examples of R0 for a variety of diseases
Disease Transmission R0

Influenza Airborne droplet 2-3

SARS Airborne droplet 2-5

HIV/AIDS Sexual contact 2-5

Mumps Airborne droplet 4-7

Rubella Airborne droplet 5-7

Polio Faecal-oral 5-7

Smallpox Social contact 5-7

Diphtheria Saliva 6-7

Pertussis Airborne droplet 12-17

Measles Airborne 12–18

Dengue Vector-borne 4-8

Malaria Vector-borne 1-3000 (median 115)



Modelling R0 for bluetongue

m: ratio vectors to host

a: biting rate

b: vector competence

p: daily survival rate

n: extrinsic incubation period

r:1/duration of viraemia in host
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Constant in time and 
space

Mapping of BT’s past, present and future R0

Two host species

(Gubbins 2007)
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AIM: assess spatial & temporal

variations in BT R0 

under climate change scenarios

Constant in time, varying 
in space

r:1/duration of viraemia in host (C,S)

d: disease induced mortality rate (C,S)

b: Prob. transmission of vector to host

β: Prob. transmission of host to vector

Φ: proportion of bites on each host species

m: ratio vectors to host (C: cattle, S: sheep)

n: 1/extrinsic incubation period

a: biting rate

p: vector mortality rate

Varying in time and space



r:1/duration of viraemia in host (C,S)

d: disease induced mortality rate (C,S)

b: Prob. transmission of vector to host

β: Prob. transmission of host to vector

Φ: proportion of bites on each host species

m: ratio vectors to host (C: cattle, S: sheep)

a: biting rate

p: vector mortality rate

n: 1/extrinsic incubation period

Feeding preferences

FAO: data set of livestock densities



Vector and host densities

C. imicola

C. obsoletus

Models driven largely by temperature 
and precipitation variables

r:1/duration of viraemia in host (C,S)

d: disease induced mortality rate (C,S)

b: Prob. transmission of vector to host

β: Prob. transmission of host to vector

Φ: proportion of bites on each host species

m: ratio vectors to host (C: cattle, S: sheep)

a: biting rate

p: vector mortality rate

n: 1/extrinsic incubation period



r:1/duration of viraemia in host (C,S)

d: disease induced mortality rate (C,S)

b: Prob. transmission of vector to host

β: Prob. transmission of host to vector

Φ: proportion of bites on each host species

m: ratio vectors to host (C: cattle, S: sheep)

a: biting rate

p: vector mortality rate

n: 1/extrinsic incubation period

Virus transmission variables

Lab or field studies:

Temperature



Past and future climate

EU ENSEMBLES project
Developing a quality controlled, high resolution prediction system for 
climate change for Europe.

Three datasets used:

1960-2006: a newly  available, high resolution (25 km) 
observed climate dataset: European Climatic 
Assessment and Dataset program.

1961 – 2000: Simulated Control experiment (SimCTL); 
11 Regional Climate Model simulations. With external 
forcing, and forced at boundary by ERA-40

1961 – 2050: Simulated SRESA1B (SimA1B); 11 RCMs;  
forced at boundary by GCM and SRESA1B emission 
scenario



Seasonal R0



Model outputs

Vectors R0

C. imicola C. obsoletus

Probability of  

occurrence

Vectors to 

hosts: 

1961-2000

Vectors to 

hosts: 

2001-2006

South: change in R0 driven by C. 

imicola density

North: change in R0 driven by 

temperature



Sensitivity analysis

Biting rate Virus development rate

Mortality rate Vector: host ratio



Past and future trends in R0

North-
western 
Europe

South-
western 
Europe

Forced by E-OBS Forced by E-OBS, SimCTL & 
SimA1B 



Simulated regional R0 changes

% change in R0 Multimodel spread Sign consistency



Conclusions

Bluetongue has emerged dramatically in Europe over the last 12 

years;

Driving variation in R0 using high resolution climate data allows the 

influence of climate on changing disease risk to be examined;

Many aspects of BT’s emergence agree in space and time with 

model outputs, lending support to the belief that bluetongue’s 

dramatic emergence is attributable to recent climate change.
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