

Marine Science Symposium Liverpool 22ndJanuary 2009

Tidal Power from the estuaries of NW England

Investigator Team:

Joule Project JIRP106/03 UoL - Department of Engineering: Oct 2006 – Dec 2008

Richard Burrows, Nick Yates,

TS Hedges, DY Chen, Ming Li, JG Zhou

POL: Ian Walkington, Judith Wolf,

J Holt, R Proctor, (D Prandle)

Proudman Oceanographic Laboratory

www.liv.ac.uk/engdept/tidalpower

Global Tidal Amplitudes

)

Getting Power from the Tides

Tidal Range Energy from water level differences α Basin Area x (Tidal Range) ²

Tidal Stream Energy from tidal currents α (Tidal Velocity)³

'Flat-Estuary' 0-D Modelling: Dee Estuary (8m turbines)

Intertidal Area Retained in Mersey

1xDoEn Ebb

3xDoEn Dual

Dee – Increasing installed capacity

Energy (TWh)

2-D Modelling using ADCIRC and Unstructured Grid Generation

Flow simulations around the Dee & Mersey Barrages

Energy Outputs from 2-D Modelling - provisional figures not fully validated

	1xDoEn Ebb-Mode Energy (TWh)		1xDoEn Dual-Mode Energy (TWh)	
Solway	9.66		6.82	
Morecambe Bay	5.98		3.99	
Mersey	0.57		0.74	
Dee	0.89		0.80	
	Total Energy (TWh)	UK (%)	Total Energy (TWh)	UK (%)
North West	17.10	4.5	12.34	3.2
Severn	15.81	4.2	14.01	3.7
Total	32.91	8.7	26.35	6.9

(1xDoEn) Ebb Mode Power Output

(1xDoEn) ebb Spring / Neap Power

(1xDoEn) dual Spring / Neap Power

CONCLUDING COMMENTS

- NW potential from barrages is about ~5% UK(2005) electricity demand
- Potential CO₂ savings ~6 million tonnes but depends on how you count it
- Energy is cost effective, secure, and predictable despite issues with the accounting methodology
- UK realisable tidal potential is ~20% UK electricity demand (Wind is currently about 1%).
- Difficult to see how else EU (UK) target of 15% renewable energy by 2020 can be met (= ~40% renewable electricity)
- Tidal barrages in the estuaries of the Northwest would be capable of meeting about half the region's electricity need.