

Tidal Stream & Wave Energy

Climate Change and Energy: A Marine Perspective Marine Symposium, Liverpool 25th Jan 2010

Tim Stallard

JOULE Centre, School of Mechanical, Aerospace and Civil Engineering University of Manchester

MANCHESTEF

An overview of Tidal Stream & Wave Technologies and ongoing R&D.

- Tidal Stream
 - State of development
 - Present research & development activities
- Wave Energy
 - State of development
 - Array-devices (Manchester Bobber)
 - Arrays of devices
- Summary

UK Tidal Stream Resource

Extractable resource ~ 16TWh/yr (Carbon Trust, 2006)

- Potentially 4.5GW installed capacity but at small number of sites
 - Of this: ~ 50 % at flow speeds of 2.5 to 4.5 m/s > 60 % in water depths > 40 m
- Channels: Pentland Firth, EMEC, Alderney
- Headlands: Anglesey, Paimpol-Brehat, Portland
- Estuaries: Strangford, Bay of Fundy, Severn...

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

Tidal Stream Devices

Variety of devices at lab- and intermediate scale

SMD TIDEL

Verdant Power

OpenHydro

Edinburgh Designs

MCT SeaFlow

University of Oxford

Horizontal Axis

Marine Current Turbines,

1.2 MW Strangford Loch (2008)1.2 MW Bay of Fundy (2011)10 MW Anglesey (RWE npower, 20??)

Tidal Generation Limited, TGL 500 kW EMEC (2010 / 2011)

Turbines typically -

Diameter ~ 16-20 m operating at tip speed ratio ~ 4-7 Support structure & control methods vary

he University f Manchester

Open Centre

Cleancurrent

17 m diameter rotorBi-directional, Direct drive¼ scale at Race Rocks, BC. 2004Full Scale at Bay of Fundy, 2010

OpenHYDRO

18 m diameter rotor, Bi-directional, Direct drive Custom barge for rapid deployment $1/_3$ scale at EMEC, UK. 2006 4 x 0.5 MW at Paimpol-Brehat, 2010 (EdF)

www.lunarenergy.co.uk

Present R&D Issues

- Turbulent loading
 - EPRI (2006), Carbon Trust (2005), DTI MRDF Protocols (2006)
 - Characteristics of ambient tidal turbulence data needed
 - Impact of turbulence on performance, loading and wake
- Farm configuration & performance
 - Impact of wake recovery & turbulence on downstream devices
 - Impact of energy extraction on incident flow
- Deployment methods
 - Offshore work in strong tidal flows is not trivial!

Unsteady loading

CFD studies 2007-08

- Large-scale turbulent inflow modelled by Synthetic Eddy Method.
- Device modelled as porous disc
- Shorter wakes in turbulent flow
- Horizontal load variation > ±20%
- Ongoing collaboration with EdF
 - Resolve free surface
 - Resolve rotating machine

PerAWAT

Tidal Stream Group:

Wave Energy Group:

Universities of Oxford, Edinburgh and Manchester, EdF, Garrad Hassan & EoN

University of Oxford, Queens University Belfast, EdF

Device / Farm Scale: Effect of free surface, spacing & turbulence on performance Models -RANS (Oxford), Code-Saturne LES (Edinburgh), Engineering tool: TidalBladed (GH). Effect of free surface, spacing & turbulence on performance Experiments performance of arrays of wave and tidal energy converters ~ 1:30th (EdF) ~ 1:70th (Manchester)

Site Scale: Modification of flow and performance due to energy extraction

Telemac 2D & 3D (EdF),

OXTIDE (Oxford),

Engineering tool: TideFarmer (GH).

Experiments at coastal scale (GH)

UK Wave Resource

• Locations:

Offshore: >20km to shoreline, > 50 m depth Nearshore: <20 km, 20 - 40 m depth Shoreline

- Theoretical resource
 - 600-700 TWh / yr: Offshore
 - 100-140 TWh / yr: Nearshore
- Practical resource
 - 50 TWh / yr: Offshore
 - 7.8 TWh / yr: Nearshore
 - 0.2 TWh / yr: Onshore

~ 19 GW installed capacity (capacity factor of 0.3)

Wave Devices

- Multiple device types
 - Overtopping
 - Oscillating float: Point absorber
 - Oscillating water column
 - Attenuator: Pelamis, Anaconda
 - Structure supported, closely spaced array

Pelamis:

- ~ 30 yrs development
- 750 kW prototype: EMEC 2004
- 3 x 750 kW prototype: at Portugal 2007 – 2009
- 750 kW prototype2: EMEC 2010
- 4 x 750 kW p2: EMEC 20?? (eON)
- 25 x 750 kW p2: Shetland 20??

Oscillating Water Column

Working surface is air / water interface Extremes less severe due to location Bi-directional turbines: Wells / Impulse

LIMPET, Islay. PICO, Azores: 1990's

ENERGETECH Parabolic Walls to amplify height

www.energetech.au, 2003

VOITH - WAVEGEN OWC Breakwaters:

Mutriku Breakwater 16 x 20 kW turbines

Siadar, Isle of Lewis 4MW, 200 m breakwater

The Universit of Mancheste

Floating OWC

Ocean Energy Buoy –

Air turbine, ~ 25 m beam, rated at 2 MW full-scale

www.orecon.com

ORECON -

Rated at 1.5 MW, Diameter 30 m Tension moorings similar to Oil & Gas Three water column chambers

- different lengths to extend operating range

Nearshore: OYSTER

Bed mounted device located in nearshore (~10 m depth) Oscillates in pitch – nearly surge & sheds high load Oscillations pump water to shoreline generator Generator rating per device: 600 kW

EMEC deployment 2009

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

The Universit of Mancheste

Array WECs

Multiple generating units supported on single structure

- Capture element close to free surface
- Higher rated power per 'unit': ease of maintenance
- Theory suggests power enhancement due to interactions
- Typically 8 10 m diameter floats

Fred Olsen Buldra, 1:3 trials, 2005 Trident Energy, NAREC, 2005

WaveStar, 2005

Manchester Bobber

- Array of floats extract energy from near wave surface
- High power density: 5MW rated in ~100m x 40m
- Float shape designed for operation in H_s up to 8 m
- Tuning of individual floats to enhance array output
- Modest horizontal loads on structure
- Standard components & structure

Development Team

- University of Manchester Intellectual Property Ltd (UMIP)
 - Dr. Frank Allison (Business manager)
- University of Manchester
 - Prof. Peter Stansby, FREng
 - Dr. Alan Williamson & Dr. Tim Stallard
- Industrial Partners
 - Royal Haskoning
 - Renold Gear
 - Renold Chain
 - ABB
 - ODE
 - Red Rooster
 - Burntisland Fabrication

(EIA)
(drive train)
(chain drive)
(electrical systems)
(P-M & structure design)
(float interconnect)
(structure fabrication)

MANCHESTER 1824

The University of Manchester UMIP®

The University of Manchester

Background: 1:100th scale

1/100th scale tank testing 2004 - 2005

Background, 1:10th Scale

1/10th scale tank testing 2005 – 2006, NaREC.

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

Recent Developments, 1:70th Scale

- 1/70th Scale Array Experiments & Device Modelling
 - Array interactions by Experiment & Model,
 - Wave climate modification, Extreme wave response, Float design

5 x 5 Array Interaction Experiments

Interactions at T = 10 s, Stallard et al. ISOPE08

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

The University of Manchester

Power output from 500 kW Bobber

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

Effect of Energy Extraction

The University of Manchester PWP arrays at EMEC (Mike21, Venugopal & Smith. 2007) Wavehub site and transmission sensitivity (SWAN, Smith et al. 2007) 1.4 MW OPT array with 96% transmission (OLUCA-Spectral, Vidal et al 2007) $\Lambda H < 4\%$ and reduction of sediment flux < 0.5 % 270 PWP devices at ~ 30 km from shoreline (REFDIF, Mendes et al. 2008) $\Lambda H < 20 \text{ cm}$ Typically constant

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

Summary

Technically extractable UK resource ~ 16TWh/yr

- at remote and/or deep sites, resource models are simplistic
- Concepts converging towards 2-3 device types
 - offshore feasibility demonstrated & attracting utility investment
 - (much) closer to commercial viability than wave devices

Many device concepts

- Minimal full-scale testing (PWP and ...?)
- ~ 20 concepts tested at 'scale' offshore
- Several structure supported concepts
- Relatively simple models of large-scale deployment

Tidal Stream

Marine Energy Costs

- WAVENET, Boud and Thorpe (2003)
- RAEng (2004) Cost of Generating Electricity
- Carbon Trust (2006) Future Marine Energy
- EPRI (2005-7)
- Ernst & Young (2007) Impact of Banding the ROC
- Renewables Advisory Board (2007) Marine Renewables

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester

Thanks for your interest.

tim.stallard@manchester.ac.uk

School of MACE: NWDA Joule Centre: FP7 Equimar: ETI, PerAWAT:

www.mace.manchester.ac.uk www.joulecentre.org www.equimar.eu www.energytechnologies.com

Turbulence Characteristics

- Turbulence Characteristics
 - Most analysis at U < 2 m/s,
 - Differs from atmospheric turbulence
 - Confinement, near surface stretching
 - Length scale disparity
 - Free surface lid (Jirka, 2001 J.HydRes)
 - $L_h pprox 6 L_{
 m v}$ (Stansby, 2003 JFM)
 - L_v similar to $\frac{1}{2}$ depth
 - Turbulence intensities
 - Variation with flow direction

Norris & Droniou, 2007, EWTEC