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An overview of Tidal Stream & Wave Technologies andAn overview of Tidal Stream & Wave Technologies and 
ongoing R&D. 

• Tidal StreamTidal Stream 
– State of development
– Present research & development activities

• Wave Energy 
– State of development
– Array-devices (Manchester Bobber)
– Arrays of devices

• Summary
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UK Tidal Stream ResourceUK Tidal Stream Resource

Extractable resource ~ 16TWh/yr (Carbon Trust, 2006)y ( , )

- Potentially 4.5GW installed capacity but at small number of sites
Of this:  ~ 50 % at flow speeds of 2.5 to 4.5 m/s

> 60 % in water depths > 40 m

- Channels: Pentland Firth, EMEC, AlderneyC a e s e a d , C, de ey
- Headlands: Anglesey, Paimpol-Brehat, Portland
- Estuaries: Strangford, Bay of Fundy, Severn…
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Tidal Stream DevicesTidal Stream Devices

Variety of devices at lab- and intermediate scaleVariety of devices at lab and intermediate scale

SMD TiDEL OpenHydro MCT SeaFlow

Verdant Power Edinburgh Designs University of Oxford
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Horizontal AxisHorizontal Axis

Marine Current TurbinesMarine Current Turbines, 
1.2 MW Strangford Loch (2008)
1.2 MW Bay of Fundy (2011)
10 MW Anglesey (RWE npower, 20??)

Tid l G ti Li it d TGLTidal Generation Limited, TGL
500 kW EMEC (2010 / 2011)

Turbines typically -
Diameter 16 20 m operating at tip speed ratio 4 7Diameter ~ 16-20 m operating at tip speed ratio ~ 4-7
Support structure & control methods vary
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Open CentreOpen Centre

Cl tCleancurrent
17 m diameter rotor
Bi-directional, Direct drive
¼ l t R R k BC 2004

OpenHYDRO
18 m diameter rotor, 
Bi-directional, Direct drive 

¼ scale at Race Rocks, BC. 2004
Full Scale at Bay of Fundy, 2010

Custom barge for rapid deployment
1/3 scale at EMEC, UK. 2006
4 x 0.5 MW at Paimpol-Brehat, 2010 (EdF)
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Ducted: Lunar EnergyDucted: Lunar Energy

W
)

Po
w

er
 (k

W

Yaw Angle (o)

16 m diameter rotor,
Venturi flume - accelerates flow 

ll ti t 40o- allows operation up to 40o

“Cassette” power take-off
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Present R&D IssuesPresent R&D Issues

• Turbulent loading• Turbulent loading –
– EPRI (2006), Carbon Trust (2005), DTI MRDF Protocols (2006)
– Characteristics of ambient tidal turbulence – data needed
– Impact of turbulence on performance, loading and wake

• Farm configuration & performance• Farm configuration & performance –
– Impact of wake recovery & turbulence on downstream devices
– Impact of energy extraction on incident flowImpact of energy extraction on incident flow

• Deployment methods –
– Offshore work in strong tidal flows is not trivial!
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Unsteady loadingUnsteady loading

CFD studies 2007-08CFD studies 2007-08

• Large-scale turbulent inflow modelled by 
Synthetic Eddy MethodSynthetic Eddy Method.

• Device modelled as porous disc

• Shorter wakes in turbulent flow
• Horizontal load variation > ±20%
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PerAWATPerAWAT

Tidal Stream Group: Universities of Oxford, Edinburgh and Manchester,p , g ,
EdF, Garrad Hassan & EoN

Wave Energy Group: University of Oxford, Queens University Belfast, EdF

D i / F S l Eff t f f f i & t b l fDevice / Farm Scale: Effect of free surface, spacing & turbulence on performance
Models -
RANS (Oxford), 
Code Saturne LES (Edinburgh)

Experiments –
~ 1:10th (Edinburgh), 

1 30th (EdF)

To establish & validate numerical models to predict the hydroydnamic 
performance of arrays of wave and tidal energy convertersCode-Saturne LES (Edinburgh), 

Engineering tool: TidalBladed (GH).

Site Scale: Modification of flow and performance due to energy extraction

~ 1:30th (EdF)
~ 1:70th (Manchester)

p y gy

Site Scale: Modification of flow and performance due to energy extraction 
Models –
Telemac 2D & 3D (EdF), 
OXTIDE (Oxford),O (O o d),
Engineering tool: TideFarmer (GH).

Experiments at coastal scale (GH)
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UK Wave ResourceUK Wave Resource

• Locations:Locations:
Offshore: >20km to shoreline, > 50 m depth
Nearshore: <20 km, 20 - 40 m depth
Shoreline

• Theoretical resourceTheoretical resource
– 600-700 TWh / yr: Offshore
– 100-140 TWh / yr: Nearshore

• Practical resource
– 50 TWh / yr: Offshore ~ 19 GW installed capacity50 TWh / yr: Offshore
– 7.8 TWh / yr: Nearshore
– 0.2 TWh / yr: Onshore

 19 GW installed capacity 
(capacity factor of 0.3)
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Wave DevicesWave Devices

• Multiple device types
– Overtopping
– Oscillating float: Point absorber

Oscillating water column– Oscillating water column
– Attenuator: Pelamis, Anaconda
– Structure supported, closely spaced array

Wavedragon, 4MW

Pelamis:
~ 30 yrs development

AWS, 2.4 MW- 750 kW prototype: EMEC 2004
- 3 x 750 kW prototype: 

at Portugal 2007 – 2009

- 750 kW prototype2: EMEC 2010
- 4 x 750 kW p2: EMEC 20?? (eON)
- 25 x 750 kW p2: Shetland 20??
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Oscillating Water ColumnOscillating Water Column

Working surface is air / water interfaceWorking surface is air / water interface
Extremes less severe due to location
Bi-directional turbines: Wells / Impulse

LIMPET, Islay. 
PICO, Azores: 1990’s

ENERGETECH
Parabolic Walls to amplify height

VOITH - WAVEGEN
OWC Breakwaters:

Mutriku Breakwater
16 x 20 kW turbines

Siadar, Isle of Lewis
4MW 200 b k twww.energetech.au, 2003
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4MW, 200 m breakwaterwww.energetech.au, 2003



Floating OWCFloating OWC

Ocean Energy Buoy –

¼ scale offshore trials 2006

gy y
Air turbine, ~ 25 m beam, rated at 2 MW full-scale www.orecon.com

¼ scale offshore trials 2006

ORECON -
Rated at 1 5 MW Diameter 30 m

www.oceanenergy.ie

Rated at 1.5 MW, Diameter 30 m
Tension moorings similar to Oil & Gas
Three water column chambers 

- different lengths to extend operating range
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Nearshore: OYSTERNearshore: OYSTER

Bed mounted device located in nearshore (~10 m depth)Bed mounted device located in nearshore (~10 m depth)
Oscillates in pitch – nearly surge & sheds high load
Oscillations pump water to shoreline generator 
Generator rating per de ice 600 kWGenerator rating per device: 600 kW 

EMEC deployment 2009

i i
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Array WECsArray WECs

Multiple generating units supported on single structure
• Capture element close to free surface
• Higher rated power per ‘unit’: ease of maintenanceg p p
• Theory suggests power enhancement due to interactions
• Typically 8 – 10 m diameter floats

WaveStar, 2005Fred Olsen Buldra 1:3 trials 2005 Trident Energy NAREC 2005

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester 16
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Manchester Bobber

• Array of floats extract energy from near wave surface

Manchester Bobber

• High power density: 5MW rated in ~100m x 40m

• Float shape designed for operation in Hs up to 8 m

• Tuning of individual floats to enhance array output

• Modest horizontal loads on structure 

• Standard components & structure
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Development TeamDevelopment Team

• University of Manchester Intellectual Property Ltd (UMIP) 
– Dr. Frank Allison (Business manager)

• University of Manchester
P f P t St b FRE– Prof. Peter Stansby, FREng

– Dr. Alan Williamson & Dr. Tim Stallard

• Industrial PartnersIndustrial Partners
– Royal Haskoning (EIA)
– Renold Gear (drive train)

Renold Chain (chain drive)– Renold Chain (chain drive)
– ABB (electrical systems)
– ODE (P-M & structure design)

R d R t (fl t i t t)– Red Rooster (float interconnect) 
– Burntisland Fabrication (structure fabrication)
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Background: 1:100th scaleBackground: 1:100th scale

1/100th scale tank testing 2004 - 2005

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester 19Private & Confidential

1/100th scale tank testing 2004 2005



Background 1:10th ScaleBackground, 1:10th Scale

1/10th scale tank testing 2005 2006 NaREC

JOULE Centre, School of Mechanical Aerospace & Civil Engineering, University of Manchester 20

1/10th scale tank testing 2005 – 2006, NaREC.



Recent Developments 1:70th ScaleRecent Developments, 1:70 Scale

• 1/70th Scale Array Experiments & Device Modelling
– Array interactions by Experiment & Model, 
– Wave climate modification, Extreme wave response, Float design

1..35
1.15Round-ended

1..33 qm~0.98

1.42Flat-bottomed

5 x 5 Array Interaction Experiments

1..35 qm~1.22

Interactions at T = 10 s Stallard et al ISOPE08
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5 x 5 Array Interaction Experiments Interactions at T = 10 s, Stallard et al. ISOPE08



Interaction Models
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Array Optimisation (linear)Array Optimisation (linear)

Beam Identical floatsBeam
Different floats

Maximum at each frequency

P

q y

Head

Pmax
P0

Head

Peak interaction factor due to
mass & damping modification

Bellew, S., Stallard, T. and Stansby, P.K. 
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Irregular Wave InteractionsIrregular Wave Interactions

Identical devices -
Attenuation of output with row No.

Hs ~ 1.75 m at full-scale

Mid-draft float3 x 4 ARRAY

Waves

15 11.5 9.5 8.25 7.0
ll l i d ( )

Hs ~ 2.60 m at full-scale
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Power output from 500 kW BobberPower output from 500 kW Bobber
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Effect of Energy ExtractionEffect of Energy Extraction
PWP arrays at EMEC (Mike21, Venugopal & Smith. 2007)
Wavehub site and transmission sensitivity (SWAN, Smith et al. 2007)
1.4 MW OPT array with 96% transmission (OLUCA-Spectral, Vidal et al 2007)

∆H < 4% and reduction of sediment flux < 0.5 % 
270 PWP devices at ~ 30 km from shoreline (REFDIF, Mendes et al. 2008) 

∆H < 20 cm Typically constant 
fftransmission coefficients.

Portuguese Pilot Zone, Orkney.
Alexandre, Stallard & Stansby 

(2009)
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SummarySummary

Technically extractable UK resource ~ 16TWh/yrm Technically extractable UK resource  16TWh/yr
- at remote and/or deep sites, resource models are simplistic

Concepts converging towards 2-3 device types

l S
tr

ea
m

- offshore feasibility demonstrated & attracting utility investment
- (much) closer to commercial viability than wave devicesTi

da
l

Many device concepts
Mi i l f ll l i (PWP d ?)- Minimal full-scale testing (PWP and …?)

~ 20 concepts tested at ‘scale’ offshore 
- Several structure supported conceptsW
av

e

Several structure supported concepts
- Relatively simple models of large-scale deployment 
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Marine Energy CostsMarine Energy Costs

• WAVENET, Boud and Thorpe (2003)
• RAEng (2004) Cost of Generating Electricity
• Carbon Trust (2006) Future Marine Energy
• EPRI (2005-7)EPRI (2005 7) 
• Ernst & Young (2007) Impact of Banding the ROC
• Renewables Advisory Board (2007) Marine Renewables

• Information sourced from developers35
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Thanks for your interestThanks for your interest. 

tim.stallard@manchester.ac.uk

School of MACE: www.mace.manchester.ac.uk
NWDA Joule Centre: www.joulecentre.orgNWDA Joule Centre: www.joulecentre.org
FP7 Equimar: www.equimar.eu
ETI, PerAWAT: www.energytechnologies.com
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Turbulence CharacteristicsTurbulence Characteristics

m/s
• Turbulence Characteristics

– Most analysis at U < 2 m/s,
U

– Differs from atmospheric turbulence
• Confinement, near surface stretching

– Length scale disparity
Free surface lid (Jirka, 2001 J.HydRes)

L 6L (St b 2003 JFM)Lh ≈ 6Lv (Stansby, 2003 JFM)

Lv similar to ½ depth

– Turbulence intensities– Turbulence intensities
• Variation with flow direction

Norris & Droniou 2007 EWTEC
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