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Regime shifts in marine communities

• “Low-frequency, high-amplitude changes in oceanic
conditions that may propagate through several trophic levels
and be especially pronounced in biological variables” a

aCollie et al. (2004), Prog. Oceanogr. 60:281-302
bLees et al. (2006), Fish and Fisheries 7:104-127
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Regime shifts in marine communities

• “Low-frequency, high-amplitude changes in oceanic
conditions that may propagate through several trophic levels
and be especially pronounced in biological variables” a

• “Sudden, high-amplitude, infrequent events, which are
detectable in multiple aspects of the physical and biological
components and on large spatial scales.”b

• Although it is widely believed that there are regime shifts in
marine communities as a result of environmental change,
there is actually little quantitative evidence.

aCollie et al. (2004), Prog. Oceanogr. 60:281-302
bLees et al. (2006), Fish and Fisheries 7:104-127

Detecting change points in marine time series using state-space models – p. 2



Regime shifts and alternative stable states

• The concept of regime shifts in marine communities is often
associated with step-like changes between alternative
stable statesa.

a
Figure from Dudgeon et al. (2010) MEPS 413: 201-216

b
Petraitis and Dudgeon (2004), JEMBE 300: 343-371

c
Petraitis et al. (2009) Oecologia 161:139-148
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Regime shifts and alternative stable states

• The concept of regime shifts in marine communities is often
associated with step-like changes between alternative
stable statesa.

• There is little experimental evidence for alternative stable
states in marine communitiesb, with the exception of mussel
beds in the North-Eastern USAc.

a
Figure from Dudgeon et al. (2010) MEPS 413: 201-216

b
Petraitis and Dudgeon (2004), JEMBE 300: 343-371

c
Petraitis et al. (2009) Oecologia 161:139-148
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Plankton in the North Sea: a proposed regime shift

The late 1980s and early 1990s appear to be unusual for both
phytoplankton (left: CPR greenness index) and zooplankton
(right: first principal component of CPR zooplankton counts) in
the North Seaa.

a
Reid et al. (2001), Fisheries Research 50:163-171
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A statistical test for the North Sea regime shift

• Solow and Smitha fitted models to a set of 5 North Sea time
series, representing the dynamics of the system as a
linearized vector autoregressive process, varying around
either one equilibrium or two.
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series, representing the dynamics of the system as a
linearized vector autoregressive process, varying around
either one equilibrium or two.

(a) phytoplankton colour, (b) copepods.
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A statistical test for the North Sea regime shift

• Solow and Smitha fitted models to a set of 5 North Sea time
series, representing the dynamics of the system as a
linearized vector autoregressive process, varying around
either one equilibrium or two.

(a) phytoplankton colour, (b) copepods.
• Although the best change point is 1989, models with and

without a change point are almost indistinguishable.

a
Solow and Smith (2005), Fisheries Oceanography 14:236-240
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Aims

• Assemble a large collection of biological time series from
marine communities around the UK.
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Aims

• Assemble a large collection of biological time series from
marine communities around the UK.

• Develop statistical models that are flexible enough to
capture the behaviour of these time series.

• Use these models to look for evidence of regime shifts.
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UK marine regions

Region Series Years

B2 35 30
C2 65 28
D2 34 30
D3 68 19
D4 47 25
C3 37 19
C4 38 19

324 time series ranging from phytoplankton to seals, contributed
by a large number of institutions. Quality control and data
preparation took several months.
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Principal components

• We want to study the community, so models of individual
species won’t answer our questions.
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Principal components

• We want to study the community, so models of individual
species won’t answer our questions.

• It isn’t practical to build empirical multivariate models of
interactions between large numbers of species.

• Summarizing the community-level dynamics in the form of
the first principal component (PC1) is common practice in
studies of regime shifts, and seems appropriate here.
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Regime Shift Detection

A common approach known as Regime Shift Detection a

assumes that the process is stationary except at possible shift
points, and that we have independent and identically distributed
observations drawn from a normal distribution within each
regime.

Region B2 (Northern North Sea)

a
Rodionov (2004), Geophysical Research Letters 31: L09204
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Statistical issues

• Population growth: empirically, biological populations show
long-term trends

Detecting change points in marine time series using state-space models – p. 10



Statistical issues

• Population growth: empirically, biological populations show
long-term trends

• Autocorrelation: observations in successive years are not
independent.

Detecting change points in marine time series using state-space models – p. 10



Statistical issues

• Population growth: empirically, biological populations show
long-term trends

• Autocorrelation: observations in successive years are not
independent.

• Measurement error: we cannot observe the sizes of marine
populations exactly.

Detecting change points in marine time series using state-space models – p. 10



Statistical issues

• Population growth: empirically, biological populations show
long-term trends

• Autocorrelation: observations in successive years are not
independent.

• Measurement error: we cannot observe the sizes of marine
populations exactly.

• Temporal variability: growth rates vary unpredictably from
year to year.

Detecting change points in marine time series using state-space models – p. 10



Statistical issues

• Population growth: empirically, biological populations show
long-term trends

• Autocorrelation: observations in successive years are not
independent.

• Measurement error: we cannot observe the sizes of marine
populations exactly.

• Temporal variability: growth rates vary unpredictably from
year to year.

• Multiple testing: if we do not know where the possible
change point is, we have to test each year.

Detecting change points in marine time series using state-space models – p. 10



Statistical issues

• Population growth: empirically, biological populations show
long-term trends

• Autocorrelation: observations in successive years are not
independent.

• Measurement error: we cannot observe the sizes of marine
populations exactly.

• Temporal variability: growth rates vary unpredictably from
year to year.

• Multiple testing: if we do not know where the possible
change point is, we have to test each year.

• We have only a few tens of observations, so we need to
work with the simplest plausible model.
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Modelling the dynamics of the first principal component

• For a single population i, we could start with a stochastic
exponential:

Ni,t+1 = Ni,tRi,t

where Ni,t is the size of population i at time t, and Ri,t is the
discrete-time growth rate at time t.
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Modelling the dynamics of the first principal component

• For a single population i, we could start with a stochastic
exponential:

Ni,t+1 = Ni,tRi,t

where Ni,t is the size of population i at time t, and Ri,t is the
discrete-time growth rate at time t.

• Log-transforming this gives us a first-order autoregressive
model

log Ni,t+1 = log Ni,t + log Ri,t

• The first principal component αt of the logs of all the
population sizes at time t is a linear combination of the
individual logged populations, with coefficients that we treat
as fixed. Thus

αt+1 = αt + St

where St is a linear combination of the log growth rates of
all the populations.
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Modelling the growth rate of PC1

• We assume that St has both deterministic and stochastic
components:

St =

k∑

j=1

βjxj,t + ηt
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Modelling the growth rate of PC1

• We assume that St has both deterministic and stochastic
components:

St =

k∑

j=1

βjxj,t + ηt

• We have explanatory variables xj,t representing patterns of
change, with unknown coefficients βj .

• The stochastic component is ηt ∼ N(0, σ2
η), where the

amount of true process error σ2
η is unknown.
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Modelling measurement error

• Measurement error is ubiquitous in ecological time series a.

a
Akçakaya et al. (2003) J. Anim. Ecol. 72:698-702
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Modelling measurement error

• Measurement error is ubiquitous in ecological time series a.
• We model the observation of PC1 at time t as

yt = αt + ǫt

a
Akçakaya et al. (2003) J. Anim. Ecol. 72:698-702
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Modelling measurement error

• Measurement error is ubiquitous in ecological time series a.
• We model the observation of PC1 at time t as

yt = αt + ǫt

• The measurement error is

ǫt ∼ N(0, σ2
ǫ )

where σ2
ǫ is unknown

a
Akçakaya et al. (2003) J. Anim. Ecol. 72:698-702
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Models considered
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Black line: deterministic skeleton. Grey lines: 100 simulated data sets. Black circles: real
observations, region C3.
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State space models

• Our model is a state-space modela.

a
Durbin and Koopman (2001), Time series analysis by state space methods
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• Our model is a state-space modela.
• We can estimate the parameters of this model by maximum

likelihood, using a Kalman filter.
• We can compare pairs of models using likelihood ratio
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• For models with change points, we always select the best

possible change point.
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State space models

• Our model is a state-space modela.
• We can estimate the parameters of this model by maximum

likelihood, using a Kalman filter.
• We can compare pairs of models using likelihood ratio

statistics.
• For models with change points, we always select the best

possible change point.
• We deal with autocorrelation and multiple testing by

parametric bootstrap: we estimate the null distribution of the
likelihood ratio statistic by simulating under the simpler
model.

a
Durbin and Koopman (2001), Time series analysis by state space methods
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Model comparisons
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Fitted models for each region
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Model selection performance

In simulations where the true model is known, we usually select
models that are too simple.

True Selected
A B C D E F

A 85 3 2 3 12 4
B 68 24 4 4 1 7
C 81 2 11 4 14 1
D 67 28 5 2 2 7
E 82 2 11 3 7 3
F 66 28 11 4 3 5
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Possible patterns of change
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Black line: deterministic skeleton. Grey lines: 100 simulated data sets. Black circles: real
observations, region C3.
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Sensitivity and specificity of step change identification

In simulation studies, when we select a model that includes a
step change, the true model usually contained a step change.

True Selected
No step Step Ambiguous Sensitivity

No step 275 15 10
Step 191 81 28 0.27

Specificity 0.84
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Conclusions

• There were convincing step changes in two out of seven
regions. However, three out of seven regions showed
trends, either as well as or instead of step changes.

• Models of marine community time series need to allow the
varied patterns of change that we see in real data.

• With short time series, we will have low power to detect
change points. However, the change points we do detect
are likely to be reliable.

Images from MarLIN database, copyright Helmar Hinz, Sue Scott, and Robert Keech.
Detecting change points in marine time series using state-space models – p. 21


	Regime shifts in marine communities
	Regime shifts in marine communities
	Regime shifts in marine communities

	Regime shifts and alternative stable states
	Regime shifts and alternative stable states

	Plankton in the North Sea: a proposed regime shift
	A statistical test for the North Sea regime shift
	A statistical test for the North Sea regime shift
	A statistical test for the North Sea regime shift

	Aims
	Aims
	Aims

	UK marine regions
	Principal components
	Principal components
	Principal components

	Regime Shift Detection
	Statistical issues
	Statistical issues
	Statistical issues
	Statistical issues
	Statistical issues
	Statistical issues

	Modelling the dynamics of the first principal component
	Modelling the dynamics of the first principal component
	Modelling the dynamics of the first principal component

	Modelling the growth rate of PC1
	Modelling the growth rate of PC1
	Modelling the growth rate of PC1

	Modelling measurement error
	Modelling measurement error
	Modelling measurement error

	Models considered
	State space models
	State space models
	State space models
	State space models
	State space models

	Model comparisons
	Fitted models for each region
	Model selection performance
	Possible patterns of change
	Sensitivity and specificity of step change identification
	Conclusions

