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•  The Coupled Model Intercomparison Project (CMIP) 
collects output from the climate models from all over the 
world and provide web access 
•  This has become the “gold standard” in assessing 
uncertainties in projections 
•  CMIP5 will produce 2.3 Pb data* 
•  However, should all models be treated as equally 
likely? 
•  Is the sample somehow representative of the “true” 
uncertainty? 
•  Could there be surprises and unknown unknowns? 

Models, models, models 

* 25 years to download on home broadband link, Internet 
archive = 3Pb, LHC will produce 15 Pb of data, World of 
Warcraft = 1.3 Pb (source Wikipedia).   



Uncertainties in Models 
and Projections 

Source: IPCC Fourth Assessment Report 

•  Models have “errors” i.e. 
when simulating present-day 
climate and climate change, 
there is a mismatch between 
the model and the 
observations 

•  Differences in model 
formulation can lead to 
differences in climate change 
feedbacks 

•  Cannot post-process 
projections to correct errors 



Uncertainties in Models 
and Projections 

Global mean 
projections from 
different models using 
the same GHG 
concentrations are 
different  

Global mean carbon 
cycle feedbacks from 
different models using the 
same GHG emissions are 
different  

Source: IPCC Fourth Assessment Report 



Metrics, Metrics, Metrics 

Reichler and Kim, 2008 



Techniques for Projections 
(projection = dependent on emissions scenario) 

•  Extrapolation of signals (e.g. ASK) 
•  The meaning of simple ensemble averaging 
•  Emergent constraints 
•  Single-model Bayesian approaches 
•  Strengths and weaknesses of different 
approaches 
•  Challenges 
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Robust quantification of contributors to past 
temperature change enables quantification of 
likely future rates of warming (ASK) 

Global mean NH - SH 

Land - ocean MTG 



What about regional information? 

Source: IPCC Fourth Assessment Report 

How do we interpret the ensemble mean and spread? 



Rank histograms 
from CMIP3 output 

Loop over grid points 
and rank the 
observation w.r.t. 
ensemble members, 
compute histogram 

Uniform histogram is 
desirable 

U-shaped = too 
narrow 

Domed = too wide 

Tokuta Yokohata, James D. Annan, Julia C. Hargreaves, Charles S. Jackson, Michael Tobis, Mark J. Webb, David Sexton, Mat Collins 



Emergent Constraints: Schematic 

•  Find relationship 
•  Find observed value 
•  Read off prediction 
•  Find observational 

uncertainty 
•  Add onto prediction 
•  Add “statistical” uncertainty 

from scatter 

Reduce uncertainty 
•  Use better observations 
•  Find a better relationship 

(constraint) 
/metric 



•  Boé	  J,	  Hall	  A,	  Qu	  X	  (2009),	  September	  Sea-‐Ice	  
Cover	  in	  the	  ArcCc	  Ocean	  Projected	  to	  Vanish	  
by	  2100,	  Nature	  Geosci,	  2:	  341-‐343	  

•  Hall	  A,	  Qu	  X	  (2006)	  Using	  the	  current	  
seasonal	  cycle	  to	  constrain	  snow	  albedo	  
feedback	  in	  future	  climate	  change.	  Geophys.	  
Res.	  LeZ.,	  33,	  L03502	  

Emergent Constraints 



Feedback parameter (climate 
sensitivity) vs different metrics 



Single Model Bayesian Approaches: 
The Perturbed Physics Ensemble 

•  Take one model structure and perturb uncertain 
parameters and possible switch in/out different 
subroutines 

•  Can control experimental design, systematically explore  
and isolate uncertainties from different components 

•  Potential for many more ensemble members 

•  Unable to fully explore “structural” uncertainties 

•  HadCM3 widely used (MOHC and climateprediction.net) 
but other modelling groups are building capability 



Some Notation 

y = {yh,yf} historical and future climate variables (many) 
f = model (complex) 
x = uncertain model input parameters (many) 
o = observations (many, incomplete) 

•  Our task is to explore f(x) in order to find y which will be closest to 
what will be observed in the past and the future (conditional on some 
assumptions) 

•  Provide probabilities which measure how strongly different outcomes 
for climate change are supported by current evidence; models, 
observations and understanding 



Probabilistic Approach 

x yh 

yf 

input space 

historical/observable climate 

future climate 

o f(x1) 

f(x1) 

f(x2) 

f(x2) 

x1 

x2 



Estimating Likelihood 

V = obs uncertainty + emulator error 
(yh-o) 

(y
h -o) 

log L0(x) ~  

V is calculated from the perturbed physics and multi-model ensemble 
It is a very complicated metric 

V-1 

+ discrepancy 



Enhancement of “Standard” 
Approach (Rougier 2007) 

y = {yh,yf} climate variables (vector) 
f = HadCM3 
x* = best point in HadCM3 parameter space – for 

observable and non-observable fields 
d = discrepancy – irreducible/”structural” model error 

(vector) 



Global Climate Sensitivity 

5-95% range 2.3-4.3K 
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Surface temperature changes for the 2080s 

10th percentile 90th percentile Median 

Winter 

Summer 



Sensitivity to Key Assumptions 

•  For pragmatic reasons that 
there are a number of 
choices and assumptions 
that have to be made in the 
implementation 

•  We can at least test the 
sensitivity to these 
assumptions 

•  Prior distributions are 
sensitive to assumptions 

•  Likelihood weighting/
discrepancy reduces that 
sensitivity significantly  

prior 

prior 

prior 

posterior 

posterior 

posterior 



Strengths and Weaknesses 
Extrapolation of signals (e.g. ASK) 
•  Conceptually simple for “near-term” (linear) climate 
change 
•  Useful for global and large-scale temperature 
projections 
•  Implementation made more complex by the use of 
attributable warming 
  
The meaning of simple ensemble averaging 
•  Consistent with current practice  
•  Can only be tested for historical climate variables, not 
future projections 
•  Inconsistent with the idea of errors-common-to-all-
models (e.g. split ITCZ) 
•  Perhaps a zeroth-order test 



Strengths and Weaknesses 
Emergent constraints 
•  Strength in simplicity 
•  Will not work for all variables (e.g. climate sensitivity) 
•  Consistency of projections of different variables? 
  
Single-model Bayesian approaches 
•  Rigorous statistical approach 
•  Can be implemented for “exotic” variables 
•  Weak observational constrains  
•  Estimating discrepancy is a challenge 



Challenges/Future Work 
•  The complexity and expense of climate models 
makes it hard to fit them into existing statistical 
frameworks (JR quote) 
•  (Many members of the climate modelling 
community are turned-off by statistics) 
•  Either we work hard to fit existing models into 
frameworks, 

•  or we develop new frameworks,  
•  or we develop new “probabilistic” climate 
models 
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Multi-Model Approach? 

x yh 

yf 

input space 

historical/observable climate 

future climate 

o 



PalaeoQUMP: QUEST Project 

•  Tamsin Edwards, 
Sandy Harrison, 
Jonty Rougier, 
Michel Crucifix, Ben 
Booth, Philip Brohan, 
Ana María García 
Suárez, Mary 
Edwards, Michelle 
Felton, Heather 
Binney, … 

•  Aim: To use 
palaeoclimate data 
and simulations to 
constrain future 
projections 



Systematic Errors in All 
Models 

Collins et al. 2010 



Bayesian Approach 

•  Vary uncertainty model input parameters x (prior distribution of y) 
•  Compare model output, m (‘internal’ model variables) with 

observations, o, to estimate the skill of each model version 
(likelihood) 

•  Form distribution of y weighted by likelihood (posterior) 

Bayesian Notation:  

the posterior is proportional to the prior times the likelihood 

Likelihood: 

,  
,  



© Crown copyright   Met Office	


Global temperatures are 
evolving as predicted in 
response to human influence 

Global temperature response 
to greenhouse gases and 
aerosols 
Solid: climate model 
simulation (HadCM2) 
Dashed: recalibrated  
prediction using data to 
August 1996 
(Allen, Stott, Mitchell, Schnur, 
Delworth, 2000) 
Observed decadal 
mean temperature 
September 1999 to 
August 2009 inclusive 

Metric=attributable warming 



x 
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Emulator Schematic 

• Use regression trained on 
ensemble runs to estimate 
past and future variables, 
{yh,yf} at any point of 
parameter space, x 

• Use transformed variables 
and take into account some 
non-linear interaction terms  

• Note – might need to run 
models at some quite 
“remote” regions of parameter 
space 

• Keep account of emulator 
errors in the final PDFs 

e.g. Rougier et al., 2009 



Estimating Discrepancy 

•  Use the multi-model ensemble from IPCC AR4 (CMIP3) 
and CFMIP (models from different centres) 

•  For each multi-model ensemble member, find point in 
HadCM3 parameter space that is closest to that member 

•  There is a distance between climates of this multi-model 
ensemble member and this point in parameter space i.e. 
effect of processes not explored by perturbed physics 
ensemble 

•  Pool these distances over all multi-model ensemble 
members 

•  Uses model data from the past and the future 
© Crown copyright   Met Office	




Oxford University 

Objective Bayesian Approaches 
  Climate model parameters are often “nuisance” and 

have no real world counterparts, 
–  So how can we define a prior distribution over them? 
–  Uniform priors are problematic (Annan & Hargreaves 2009), 

and arbitrary due to co-ordinate definition. 
–  Expert priors also problematic in climate research (double 

counting). 
  “Objective” Bayesian approaches use a rule/

algorithm to form prior aiming to, 
–  Maximise information gain from the data. 
–  Be Invariant to co-ordinate transformation. 
–  Approximate frequentist “sampling” properties. 
–  Account for geometry of model response. 

  Already used (unknowingly?) in D&A based forecast 
studies (ASK). 

€ 
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x = model simulations of observable quantities
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Oxford University 

EBM example (Rowlands 2010 in prep) 
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  Jeffreys’ prior is the simplest approach (reference 
priors for the statistics aficionados).  

  Gives 5-95% credible interval of 2.0-4.9 K for CS. 
  Approximately matches likelihood profile. 
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Probabilistic projections in response 
to A1B emissions 

  Changes in temperature and precipitation for future 20 year 
periods, relative to 1961-90, at 300km scale. 



Comparison with an Alternative 
Approach 

Coloured lines 
show 2.5th, 10th, 
50th (thick), 90th 
and 97.5th 
percentiles of 
projected past 
and future 
changes 

Carbon cycle 
feedbacks 
omitted 

Together with sensitivity tests, gives confidence in the projections 

Peter Stott, UKCP Team 


