

Promoting phytoplankton blooms in the open ocean:

Results from nutrient addition experiments

Dr. Claire Mahaffey

Dr. Karin Bjorkman and Prof. David Karl

Introduction

• Fixation of CO₂ by phytoplankton (<u>PRIMARY PRODUCTION</u>) dependent upon two factors: **light and nutrients**

SEA SURFACE COLOUR AS A PROXY FOR CHLOROPHYLL A CONCENTRATIONS

(Sub) tropical ocean environment

- Permanently stratified
- Nutrient impoverished surface ocean

- Picoplankton (< 2 μm) responsible for > 90% of chlorophyll a and > 70% of carbon fixation

Community size structure and export

From Karl, 1999

Blooms in "ocean deserts"

Episodic blooms of diatoms and nitrogen fixing cyanobacteria (Church et al., 2008, Dore et al., 2008,

WHAT DRIVES THESE BLOOMS?

- Summer time increase in water column stability
- Mesoscale eddies and Rossby waves (Church et al., 2008, Wilson et al., 2003)
- Winter time supply of phosphorus (Dore et al., 2008)

Why do we need to understand blooms in ocean deserts?

- Ocean deserts represent 60 % of total ocean area (Eppley and Peterson, 1979)
- Responsible for ~50% of global ocean carbon export (Emerson et al., 1997)
- Periodic blooms drive up to 50% of annual export (Karl et al., 1997, Dore et al., 2008)

HOWEVER:

- Few direct observations of blooms due to their stochastic nature
- Uncertainty surrounding:
 - Species composition and succession
 - Carbon fixation and fate
 - Speed of development
 - Reproducibility

Ocean fertilisation

• Addition of nutrient cocktail or deep-sea water to surface ocean to stimulate carbon fixation and sequestration

Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes

David M. Karl^{1,*}, Ricardo M. Letelier²

¹Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822, USA ²College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA

Ocean fertilization: a potential means of geoengineering?

BY R. S. LAMPITT^{1,*}, E. P. ACHTERBERG¹, T. R. ANDERSON¹,
J. A. HUGHES¹, M. D. IGLESIAS-RODRIGUEZ¹, B. A. KELLY-GERREYN¹,
M. LUCAS², E. E. POPOVA¹, R. SANDERS¹, J. G. SHEPHERD¹,
D. SMYTHE-WRIGHT¹ AND A. YOOL¹

Ocean pipes could help the Earth to cure itself

James E. Lovelock*, Chris G. Rapley† *Green College, University of Oxford, Woodstock Road, Oxford OX2 6HG, UK †Science Museum, Exhibition Road, South Kensington, London SW7 2DD, UK

Nutrient addition experiments

100 1 200 300 Pressure (dbar) 400 500 600 700 800 900 1000 <mark>–</mark> А 2004 2005 2006 2007

HOT 155-198 stn 2 Nitrate + Nitrite (µmol/kg)

• Dissolved nutrients

- Biomass parameters (chlorophyll a)
- \bullet Community size structure, 0.2, 2 and 10 μm
- Species composition (pigments and flow cytometry)
- Rate measurements (carbon fixation)

5 % vol:vol

Question: In a nutrient limited system, can we predictably stimulate a phytoplankton bloom by adding nutrient-rich deep seawater:

- increase in biomass (chlorophyll *a*)
- increase rate of carbon fixation
- change community size structure from small (0.2-2 μm) to large (> 10 μm) cells
- increase the potential for export of organic carbon?

Bloom response

- 3 cruises
- 70-100% nutrient assimilation
- 20 ± 4 fold increase in chlorophyll
- 23 \pm 7 fold increase in carbon fixation

Bloom response

- 3 cruises
- 70-100% nutrient assimilation
- 20 ± 4 fold increase in chlorophyll
- 23 \pm 7 fold increase in carbon fixation

Non-bloom response

Non-bloom response

Non-bloom response

Experiment summary

Parameter	Bloom response	Non-bloom response
Nutrients	70-100% assimilation	< 50% assimilated
Chlorophyll	20 ± 4 fold increase	4 ± 1 fold increase
Carbon fixation	23 ± 7 fold increase	5 ± 1 fold increase
Size composition	Dominated by > 10um	Dominated by 0.2 – 2 um
Months	May to July	September to January

Bloom response, Summer (May to July) – rapid and complete assimilation of nutrients and bloom formation

Non-bloom response, Winter (September to January) – slow and incomplete assimilation of nutrients and no bloom formed

Potential carbon fixed

- Nitrate added = $2 \mu M$
- Maximum potential carbon fixed $= 174 \pm 19 \mu g C L^{-1}$

Accumulated carbon fixed during summer and winter incubations

Season	Whole community *	> 10um cells *
Summer	115 ± 18	59 ± 15
Winter	31 ± 4	5 ± 1

* Expressed as percent (%) of maximum potential carbon fixed (174 μ g C L⁻¹)

Comparing summer and winter carbon potential:

3x carbon fixed for whole community 10x more carbon fixed by large cells (> 10 μm)

What are the mechanisms driving this variation in community response?

- Initial nutrient conditions
- Community structure and composition
- Size composition

NO SIGNIFICANT DIFFERENCE BETWEEN WINTER AND SUMMER CRUISES

• Water column stability and structure

Seasonal alteration of water column stability may cause FINE-SCALE changes in nutrient fields and community structure

Potential mechanisms

• Summer-time blooms drive large export event

•"Sweep" the water column of seed populations capable of rapid assimilation of nutrients

- Light flux E m⁻² d⁻¹
 - Summer: 47.3 ± 2.3
 Winter: 31.2 ± 3.1

SIGNIFICANT DIFFERENCE IN LIGHT FLUX

Conclusions

- Addition of nutrient-rich deep seawater to surface phytoplankton community generated blooms during summer only
- Mechanisms underlying variation in phytoplankton community response between summer and winter remains uncertain
- IMPLICATIONS:
 - fine scale upwelling, e.g. mesoscale eddies
 - Artificial fertilisation of the open ocean

Thank you

Carbon pumps

- Solubility pump:
- seawater
 temperature
- thermohaline circulation
- Biological pump