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Introduction

* Fixation of CO, by phytoplankton (PRIMARY PRODUCTION) dependent
upon two factors: light and nutrients

60% of surface ocean:
carbon fixation limited by
nutrient supply

YET: subtropical gyres
account for up to 50% of
total organic carbon export
of global ocean

SEA SURFACE COLOUR AS A PROXY FOR CHLOROPHYLL A CONCENTRATIONS



(Sub) tropical ocean environment

- Permanently stratified Phytoplankton biomass

(Chlorophyll a)

* Nutrient impoverished surface ocean
* Picoplankton (< 2 um) responsible for > “2-10 um

90% of chlorophyll a and > 70% of >10 um
carbon fixation

E Nitrate

Carbon fixation

£0.2-2pum
E2-10um

>10 um




Community size structure and export
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Blooms in “ocean deserts”

* Episodic blooms of diatoms and
nitrogen fixing cyanobacteria
(Church et al., 2008, Dore et al.,
2008,

WHAT DRIVES THESE BLOOMS?

* Summer time increase in water
column stability
* Mesoscale eddies and Rossby waves

e (Church et al., 2008, Wilson et al.,
| 2003)

HEET 30T . B

* Winter time supply of phosphorus

(Dore et al., 2008)



Why do we need to understand
blooms in ocean deserts?

* Ocean deserts represent 60 % of total ocean area (eppley and Peterson, 1979)
* Responsible for ~“50% of global ocean carbon export (merson et al., 1997)
* Periodic blooms drive up to 50% of annual export (karl et al., 1997, Dore et al., 2008)

HOWEVER:
* Few direct observations of blooms due to their
stochastic nature
e Uncertainty surrounding:
- Species composition and succession
- Carbon fixation and fate
- Speed of development
- Reproducibility



Ocean fertilisation

* Addition of nutrient cocktail or deep-sea water to surface ocean to
stimulate carbon fixation and sequestration
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Nutrient addltlon experiments

HOT 155-198 stn 2 Nitrate + Nitrite (umol’kg)

* Stn. ALOHA
(22045 N,
GA58°W)

Pressure {dbar)

* Dissolved nutrients

* Biomass parameters (chlorophyll a)

 Community size structure, 0.2, 2 and 10 um

» Species composition (pigments and flow cytometry)
» Rate measurements (carbon fixation)

5 % vol:vol
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Question: In a nutrient limited system, can we
predictably stimulate a phytoplankton bloom by
adding nutrient-rich deep seawater:

- increase in biomass (chlorophyll a)
- increase rate of carbon fixation

- change community size structure from small (0.2-2 um) to large (> 10
um) cells

- increase the potential for export of organic carbon?



Bloom response

* 3 cruises
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Bloom response
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Bloom response

* 3 cruises

e 70-100% nutrient assimilation

: * 20 + 4 fold increase in chlorophyll
: * 23 + 7 fold increase in carbon
' | | fixation
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Non-bloom response
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Non-bloom response
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Non-bloom response
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Experiment summary

Parameter Bloom response Non-bloom response
Nutrients 70-100% assimilation < 50% assimilated
Chlorophyll 20 + 4 fold increase 4 + 1 fold increase
Carbon fixation 23 + 7 fold increase 5+ 1 fold increase
Size composition Dominated by > 10um Dominated by 0.2 —2 um
Months May to July September to January

Bloom response, Summer (May to July) — rapid and
complete assimilation of nutrients and bloom formation

Non-bloom response, Winter (September to January) —
slow and incomplete assimilation of nutrients and no bloom

formed



Potential carbon fixed

* Nitrate added =2 uM
* Maximum potential carbon fixed =174+ 19 pg C L

Accumulated carbon fixed during summer and winter incubations

Season Whole community * > 10um cells *
Summer 115+ 18 50+15
Winter 31+4 51

* Expressed as percent (%) of maximum potential carbon fixed (174 ug C L)

Comparing summer and winter carbon potential:

3x carbon fixed for whole community
10x more carbon fixed by large cells (> 10 um)



Mized Layer Depth (m)

What are the mechanisms driving this
variation in community response?

* Initial nutrient conditions
 Community structure and composition

* Size composition

* Water column stability and structure
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Seasonal alteration of water
column stability may cause
FINE-SCALE changes in
nutrient fields and community
structure



Potential mechanisms

* Water column sweeping by export events

Particle flux anomaly measured at 150m
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* Summer-time blooms
drive large export event

*“Sweep” the water column
of seed populations
capable of rapid
assimilation of nutrients
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Conclusions

Addition of nutrient-rich deep seawater to surface phytoplankton
community generated blooms during summer only

Mechanisms underlying variation in phytoplankton community
response between summer and winter remains uncertain

IMPLICATIONS:

— fine scale upwelling, e.g. mesoscale eddies
— Artificial fertilisation of the open ocean



Thank you



Carbon pumps

- thermohaline
circulation

Biological and physical pumps of carbon dioxide e Solubil |ty pump:
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