

Re-framing the climate change debate

Dr Sarah Mande The Tyndall Centre for Climate Change Researc The University of Mancheste

Climate change and energy: a marine perspectiv January 201

Talk outline

- I) Dangerous climate change
- 2) Cumulative emissions
- B) Global GHG pathways
- 4) UK responses to the challenge

What is dangerous climate change?

UK & EU define this as 2°C

But:

- ... 2°C impacts at the worst end of the range
- ... ocean acidification devastating even at 400-450ppmv CO₂
- .. failure to mitigate leaves 2°C stabilisation highly unlikely

Emission-reduction targets

ndall°Centre

UK, EU & Global - long term reduction targets

UK's 80%	reduction in CO ₂ e by	2050
EU 60%-80%	"	2050
Bali 50%	"	2050

CO₂ stays in atmosphere for 100+ years,

Long-term targets are dangerously misleading

- 2050 reduction unrelated to avoiding dangerous climate change (2°C)
- cumulative emissions that matter (i.e. carbon budget)
- this fundamentally rewrites the timeline of climate change
 - from long term gradual reductions
 - to urgent & radical reductions

How do global temperatures *link to* global and national carbon budgets & *from there to* emission-reduction pathways?

... looking at it graphically

The University of Manch

pathway for a CO_2 e budget

Tyndall's emission scenarios (2000-2100 CO₂e)

To consider:

CO₂ emissions from landuse (deforestion)
 Non-CO₂ GHGs (principally agriculture)

What emission space remains for:

3. CO₂ emissions from energy?

Tyndall's emission scenarios (2000-2100 CO₂e)

Included very optimistic:

ndall°Centre

- CO₂ from land-use & forestry emission scenarios

Tyndall's emission scenarios (2000-2100 CO₂e)

Included very optimistic:

- CO₂ from land-use & forestry emission scenarios

- CO₂ from land-use & forestry emission scenarios

Characterised by high uncertainty (principally driven by deforestation; 12-25% of global CO₂e)

Two Tyndall scenarios with different carbon-stock levels remaining: 70% & 80%

Tyndall's emission scenarios (2000-2100 CO₂e)

Included very optimistic:

ndall°Centre

- land-use & forestry emission scenarios
- non-CO₂ greenhouse gas emissions

Tyndall's emission scenarios (2000-2100 CO₂e)

Included very optimistic:

ndall°Centre

- land-use & forestry emission scenarios
- non-CO₂ greenhouse gas emissions

- non-CO₂ greenhouse gas emissions

Marked tail from food related emissions

Food emissions/capita assumed to halve by 2050

Voor

Tyndall's emission scenarios (2000-2100 CO₂e)

Included very optimistic:

Centre

- land-use & forestry emission scenarios
- non-CO₂ greenhouse gas emissions?
- Global CO₂e emissions peaks of 2015/20/25?

factoring in...

the latest emissions data

what is the scale of the global 'problem' we now face?

It's getting worse!

Global **CO**₂ emission trends?

latest global **CO₂e** emission trends?

What does:

this failure to reduce emissions & the latest science on cumulative emissions

Say about a 2°C future?

What greenhouse gas emission

pathways for 2°C

ndall[°]Centre for Climate Change Research

Assumptions

- 2015/20/25 global peak in emissions
- Highly optimistic deforestation & food emission reduction
- 2°C global carbon budget
 1400 to 2200 GtCO₂e for 2000-2100
- ~10% to 60% chance of exceeding 2°C

Total greenhouse gas emission pathways

ndall°Centre

for Climate Change Research

(Anderson & Bows. 2008 Philosophical Transactions A of the Royal Society. 366. pp.3863-3882)

10% - 60% chance of exceeding 2°C & with a 2020 peak

(Anderson & Bows. 2008 Philosophical Transactions A of the Royal Society. 366. pp.3863-3882)

... and for energy emissions? (with 2020 peak)

Year

What annual global emission reductions

from energy for 3°C and 4°C

Assume

- 2020 global peak in emissions
- Highly optimistic deforestation & food emission reductions
- ~ **50%** (?) chance of exceeding 3°C & 4°C

For **3°C** & emissions peaking by 2020: ... **9%** annual reductions in CO₂ from energy

For 4°C & emissions peaking by 2020: ... 3.5% annual reductions in CO₂ from energy

What are the precedents for such reductions?

Annual reductions of greater than 1% p.a. have only

"been associated with economic recession or upheaval" Stern 200

UK gas & French 40x nuclear ~1% p.a. reductions (ex. aviation & shipping)

Collapse Soviet Union economy ~5% p.a. reductions

450ppmv

greenhouse gas emission pathways

(50% chance of exceeding 2°C)

For a 450ppmv CO₂ future,

... the UK can emit ~ 4.8 billion tonnes of carbon between 2000-

2050

Note: this is based on how the UK Government apportioned global emissions to the UK in order to calculate the '60% by 2050' target

From this two questions arise...

Question 1...

.....what were UK emissions between 2000 & 2006?

Emissions: 2000-2006 = ~1.2 billion tonnes carbo For a 450 future,

this leaves 3.6 billion tonnes for 2007-205

... i.e. we've used $\frac{1}{4}$ of our permitted emissions for 50 years in just $\frac{6\frac{1}{2}}{2}$ years!

Question 2...

..... what emissions are we locked into in the immediate future?

Looking at 450ppmv target graphically ...

What does the pathway approach say about UK emission policies ?

Mitigation Short-term: 2010-2015

- Rapid reduction in emissions through behaviour change voluntary & enforced (via regulation)
- Low emission diets
- Afforestation combined timber new-build
- Moratoriums on:

sale of inefficient appliances (all A++ from 2010)
sale of any cars under 60mpg
airport, sea port and road expansion
any new fossil-fuel powerstation (without CCS & CHP)

Mitigation Short-Medium term: 2015-2025

 Rapid deployment of low-carbon energy supply rapid renewables (Severn barrage?) massive biomass programme widespread micro-grids coal with CCS & CHP nuclear nuclear with CHP

- Massive shift to electricity for transport & heat
- Hydrogen infrastructure (?)

Reducing carbon emissions (mitigation)

To avoid dangerous climate change we need a reduction in carbon emissions in the region of:

90% !!

Remember – almost all carbon emissions are from energy & 80% of all emissions come from 20% of the global population !

