Energy – how much do we need and how can we get it?

- Introduction.
- How much energy do we and will we need in the UK?
- How can we generate energy without the CO_2 ?
- **Summary**.

Introduction – measuring energy

How much energy do we need?

- Measure energy in joules (J).
 - $1000 \text{ J} = 10^3 \text{ J}$ = 1 kilojoule (1 kJ).
 - $1000\ 000\ J = 10^6\ J$
 - = 1 megajoule (1 MJ).
 - 1000 000 000 J = 10⁹ J
 = 1 gigajoule (1 GJ).
 - 1000 000 000 000 J = 10¹² J
 = 1 terajoule (1 TJ).
- Relate to "everyday" units:
 3.6 MJ = 1 kWh, costs about 10p.
- Measure power in watts (W).
- "Everyday" equivalent kWh per day:
 1 kWh/d = 40W.

- Examples:
- Light bulb, power 40...100 W or 1...2.4 kWh/d.
- Energy used by 100 W bulb in 24 h is 8.6 MJ or 2.4 kWh.

- Average UK electrical energy consumption 16 kWh/d per person or about 58 MJ per person per day.
- This is a power of 0.68 kW per person.
- UK population about 60 x 10⁶ so total current electrical power consumption ~ 40 GW.

How do we generate energy?

• What we need now, current energy supply:

 Projection of electricity generating capacity using current resources:

What should the "new" be?

The Imja glacier in the 1950s (top) and in 2007 (bottom):

What should the "new" be?

How much energy will we need?

How can we get it without the CO_2 ?

- In the UK, we now use roughly:
 - 1.6 kW per person on transport.
 - 1.6 kW per person on heating.
 - 0.7 kW per person of "electricity" i.e. computers, fridges, TVs...
- Assume in future use electricity for most transport, more efficient than current systems, so require 0.8 kW/p...
- ...and that we insulate buildings better, use heat pumps etc. so heating requirements 0.8 kW/p.
- Total electricity demand then about 140 GW.
- (C.f. current figure of 40 GW.)

- Renewable* energy resources:
 - Solar.
 - Biomass.
 - Wind.
 - Waves.
 - Tides.
 - Hydroelectric.
- Non-renewable energy:
 - Fusion.
 - "Clean" coal.
 - Fission.
- * Naturally replenished in a relatively short period of time.

Solar power and biomass

- Solar constant 1.4 kW/m².
- At ground level ~ 1 kW/m^2 .
- Correct for latitude, ~ 600W/m² peak... to average ~ 200 W/m²...and for UK weather ~ 100 W/m².

- Supplying 140 GW with solar cells of efficiency ~10% requires area of 14 × 10⁹ m².
- This is 6% of land area of UK...
- ...and more than 100 times the photovoltaic generating capacity of the entire world.
- Feasible for ~ 10% of UK needs?
- Interesting globally: return to this later.
- Efficiency of conversion of solar energy to biomass about 1%...

Wind

- Average UK wind speed ~ 6 ms⁻².
- $K = \frac{1}{2} \text{ mv}^2$, efficiency, max. packing, give wind power density of about 2 W/m².
- Need 30% of UK (70 × 10⁹ m²,
 i.e. Scotland) to provide 140 GW.
- Off shore, wind speed higher, power density ~ 3 W/m².
- Need turbines on ~ $45 \times 10^9 \,\mathrm{m}^2$.
- Shallow (10...25 m depth) offshore sites available about 20 000 km²...
- ...but many competing uses and technical problems.
- Provide perhaps 10% of UK's future electricity?

Waves

Tides

- Energy in waves hitting UK ~ 40 GW.
- Difficult to use efficiently, many competing interests.
- Perhaps provide about 5% of UK's future electrical energy?

- Lots of energy in principle (~250 GW).
- How can it be used efficiently?
- Competing interests?
- Perhaps 5% of UK's future electricity?

Hydroelectric

Renewable balance

- UK power density ~ 0.1 W/m², so cannot make large contribution.
- Largest hydro-electric power station is Three Gorges Damn on Yangtse, projected output 20 GW.
- Displaced ~ 1.2×10^6 people, caused, and will cause, ecological problems.

Energy source	Prop. of electricity
Solar	10%
Wind	10%
Wave	5%
Tidal	5%
Other	5%
Total	35%

- We are still missing the lion's share...
- ...and the UK is particularly well off for wind, wave and tidal power!
- What about "clean" coal, nuclear fission and fusion and global solar power?

"Clean" coal

- Burn coal, capture ~ 90% of CO², permanently store in e.g. depleted oil reservoirs.
- Efficiency of power production decreases from ~ 40% to ~ 30%.

- UK coal reserves ~ 250 years at current rate of consumption.
- Globally very important (China building two new power stations every week).
- Use technology for cement factories...

Nuclear fission and fusion

- Fission currently provides ~ 20% of UK electrical energy.
- But many (perceived) problems:
- Safety:
 - Chernobyl.
 - Three Mile Island.
- Waste:
 - Actinides with half lives of many thousands of years.
- Proliferation.
- Uranium reserves uncertain (extract from oceans, use fast breeder reactors?).
- New approaches needed: ADSR and thorium?

- Fusion under investigation by ITER.
- Construction until 2017, first deuterium-tritium plasma 2026?

International solar power

- More than 90% of world's population live less than 3000 km from a desert.
- Could be supplied with solar power.
- Use solar thermal collectors to heat oil, produce steam, generate electricity, or with Stirling engines:

- HVDC lines to efficiently transfer to coast (electrolysis to produce H₂) and to centres of population.
- Less than 10% of desert area needed to supply world's energy needs.
- Proposal for Europe: Desertec-Eumena.

Summary

- Producing enough electricity without causing climate change is a challenge.
- Renewables can provide ~ ¼ of UK future energy needs (global approach, solar much more).
- Investigate all feasible CO₂-free energy supply (and distribution) technologies – some may not work!
- Rapid progress needed to avoid severe consequences of climate change.

