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Al is moving towards multi-step
decision- making under uncertainty...

“Sequential Decision Problems”
“Optimal Control”

“Reinforcement Learning”
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RL target for inference: Markov Decision Process

a,10

[example: “chain”]

* (S,4,TR)
e S: Set of States
e 4: Set of Actions
N > & > Multinomial posterior
 T: Transition Probabilities(Z(s,a,s ") (pirichilet conjugate prior)

* R: Reward Distributions(R(s,a) ) Gaussian posterior
(Normal-Gamma conjugate prior)



Exploration/exploitation dilemma

a,10

* Trade-off ‘value of information” from exploration vs
regret of not exploiting information already known.

* A generalisation of Thompson sampling to multi-
step problems achieves this.



Bayesian RL on “models of interaction” like MDPs

Start a new interaction
- (“episode”).

Sample a model for the
world (e.g. MDP) from
current posterior.

Solve the world model for
optimal behaviour; e.g.
Bellman backup to obtain
control “policy”.

Take actions according to
this policy until the end of
the episode.

Use the collected
transitions & rewards to
update the posterior.




e.g. navigation while learning map

goal goal

start start

posterior represents drawing a hypothesis from the posterior,
uncertainty in map then solve for shortest path ... yields
based on experience exploratory behaviour!

(then update posterior)



Developments/applications in PSRL

e 2000: formulated for RL

» 2005: modelling cognition [Daw/Dayan]

e 2011+: medical applications

e 2012: MCTS for large models/games [Guez/Silver/Dayan]

e 2013 & 2017: regret bounds & outperformance ... best for any
RL algorithm [Osband/Russo/Van Roy]

e 2019: multi-agent

e 2021: partially observable tasks

e 2023: Langevin Thompson Sampling (MCMC)
e 2024: complex neural world models?






Optimal Policy from
Dynamic Programming

* Can apply to:
e true MDP (not known during learning)

* max likelihood MDP (changes during learning)
* hypothesised MDP

* DP backup on an estimated MDP:

Va\ N

O(s,a) <« R(s,a)+y XT(s,a,s")max , O(s",a')

s'eS
Expected Expected . Best expected
discounted  immediate  Sum over possible discounted reward
reward fora  reward fora transitions in successor state

h 1= N (discounted)
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