Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Module Details

The information contained in this module specification was correct at the time of publication but may be subject to change, either during the session because of unforeseen circumstances, or following review of the module at the end of the session. Queries about the module should be directed to the member of staff with responsibility for the module.
Title Mathematical Foundations of Data Science
Code MATH501
Coordinator Dr JE Banks
Mathematical Sciences
Jessica.Banks@liverpool.ac.uk
Year CATS Level Semester CATS Value
Session 2025-26 Level 7 FHEQ First Semester 30

Aims

To provide students with a solid grounding in linear algebra, calculus, probability and programming as required for more advanced specialist pathway modules


Learning Outcomes

(LO1) Use matrix arithmetic, calculus and differential equations to solve real-life problems.

(LO2) Describe real-life phenomena using mathematical modelling approaches, including solving optimisation, differential equation, and linear algebra problems.

(LO3) Find the moments, median and mode of a given distribution function and provide their practical interpretation.

(LO4) Find conditional expectations and quantify dependence between variables.

(LO5) Characterise distributions of random variables via their cdfs, pdfs, pmfs and characteristic functions, and determine one from the other

(LO6) Explain ethical limitations of data collection and data usage in specific contexts.

(LO7) Prepare data for further analysis using data wrangling techniques.

(LO8) Obtain estimates for common statistics (such as mean) and provide interpretation of these estimates using statistical inference (confidence intervals and p-values).

(LO9) Knowledge of academic integrity with particular reference to the University of Liverpool’s Code of Practice on Assessment.

(S1) Analytical and problem-solving skills

(S2) Digital fluency


Syllabus

 

Linear algebra
- Matrix arithmetic
- Vectors and their use in describing and solving real life problems

Calculus
- Sketch graphs
- Solve optimisation problems for a range of real-life problems
- Differential equations for real-life phenomena
- Derivatives and integrals
- Finding basic derivatives and integrals
- Definite integral as area under a curve

Probability
- Random variable
- Discrete and continuous distributions and their cdf, pdf and pmf and characteristic function
- Common distributions
- Expectation and higher order moments
- Median and mode
- Joint distributions
- Conditional distributions and marginal distributions
- Independence
- Central Limit Theorem

Data
- Ethical considerations
- Data wrangling and cleaning

Estimation
- General principles and properties of estimators (unbiased, minimum variance, consistency)
- Difference between sample moments and population moments

Inference
- Quantifying uncertainty through confidence intervals and relationship to p-values
- Interpretation of results from statistical testing


Recommended Texts

Reading lists are managed at readinglists.liverpool.ac.uk. Click here to access the reading lists for this module.

Pre-requisites before taking this module (other modules and/or general educational/academic requirements):

 

Co-requisite modules:

 

Modules for which this module is a pre-requisite:

 

Programme(s) (including Year of Study) to which this module is available on a required basis:

 

Programme(s) (including Year of Study) to which this module is available on an optional basis:

 

Assessment

EXAM Duration Timing
(Semester)
% of
final
mark
Resit/resubmission
opportunity
Penalty for late
submission
Notes
             
CONTINUOUS Duration Timing
(Semester)
% of
final
mark
Resit/resubmission
opportunity
Penalty for late
submission
Notes
Homework 1    40       
Homework 2    60       
Academic Integrity Quiz