

BSc (Hons)

Mathematics

UCAS code G100

Entry requirements Study mode Duration

A level: ABB Full-time 3 years

Apply by: **14 January 2026**Starts on: **28 September 2026**

About this course

Studying Mathematics at Liverpool is an excellent foundation for a wide range of careers. At Liverpool you will be part of a department which is first-class in teaching and research.

Introduction

Mathematics is a fascinating, beautiful and diverse subject to study. It underpins a wide range of disciplines; from physical sciences to social science, from biology to business and finance. At Liverpool, our programmes are designed with the needs of employers in mind, to give you a solid foundation from which you may take your career in any number of directions.

A Mathematics degree at the University of Liverpool is an excellent investment in your future. We have a large department with highly qualified staff, a first-class reputation in teaching and research, and a great city in which to live and work. You will see a broad range of degree programmes at Liverpool – Mathematics can be combined with many other subjects to widen your options even further.

In the first two years of this programme, you will study a range of topics covering important areas of both pure and applied mathematics, no assumptions are made about whether or not you have previously studied mechanics or statistics, or have previous experience of the use of computers. The modules studied in year one help

to get all students at the same level, studying fundamental ideas and reinforcing A level work.

This programme also has a year abroad option, an incredible opportunity to spend an academic year at one of our partner universities.

What you'll learn

- Pure mathematics
- Applied mathematics
- Problem solving
- Team work
- How to communicate and present clearly

Accreditation

Both accreditations can be achieved on a conditional basis. Accreditations depend on your choice and your performance on optional modules.

Accreditation in detail

Institute of Mathematics and its Applications (IMA)

The IMA is the professional learned institute for mathematicians, supporting the advancement of mathematical knowledge and its applications to promote and enhance mathematical practice for the benefit of society.

Royal Statistical Society

The RSS is a professional body for all statisticians and data analysts - www.rss.org.uk.

Course content

Discover what you'll learn, what you'll study, and how you'll be taught and assessed.

Year one

In year one you will study a range of compulsory modules.

Modules

Compulsory modules	Credits
CALCULUS I (MATH101)	15
CALCULUS II (MATH102)	15
INTRODUCTION TO LINEAR ALGEBRA (MATH103)	15
INTRODUCTION TO STATISTICS USING R (MATH163)	15
MATHEMATICAL IT SKILLS (MATHIII)	15
INTRODUCTION TO STUDY AND RESEARCH IN MATHEMATICS (MATH107)	15
NEWTONIAN MECHANICS (MATH122)	15
NUMBERS, GROUPS AND CODES (MATH142)	15

Programme details and modules listed are illustrative only and subject to change.

Year two

In year 2, you will continue to study a range of important mathematical topics in more depth. You will study some compulsory and choose some optional modules from the list below. Please note that we regularly review our teaching, so the choice of modules may change.

For students who did not study at XJTLU, modules MATH244 and MATH221 are compulsory, module MATH242 is optional, module MATH241 is not available. For students who studied at XJTLU, module MATH241 is compulsory; modules MATH244, MATH221, and MATH242 are not available.

During year 2, you will be asked to choose one of the following 4 pathways: Applied Mathematics (AM), Pure Mathematics (PM), Stochastics, Probability and Operational Research (SPOR) or Theoretical Physics (TP). Each pathway is a coherent collection of modules which cover a particular area of mathematics.

It will be important to consider which pathways you might be interested in following in year 3 when making your year 2 module choices. In particular, you should ensure that you have the necessary prerequisites:

- Applied Mathematics Pathway: MATH226 is recommended; further suitable modules include MATH228
- Pure Mathematics Pathway: MATH247 is strongly recommended, MATH242 is recommended
- Statistics, Probability and Operational Research Pathway: MATH254 is compulsory, MATH269 is recommended, further suitable modules include MATH226, MATH242 and MATH260
- Theoretical Physics Pathway: MATH228 is compulsory.

For students who did not study at XJTLU, modules MATH244 and MATH221 are compulsory, module MATH242 is optional, module MATH241 is not available. For students who did study at XJTLU, module MATH241 is compulsory, modules MATH244, MATH221 and MATH242 are not available.

Towards the end of Year 2 Semester 1, you will be asked to choose one of the following 4 pathways: Applied Mathematics (AM), Pure Mathematics (PM), Stochastics, Probability and Operational Research (SPOR) or Theoretical Physics (TP). Each pathway is a coherent collection of modules which cover a particular area of mathematics.

It will be important to consider which pathways you might be interested in following in year 3, when making your year 2 module choices. In particular, you should

ensure that you have the necessary prerequisites:

Applied Mathematics Pathway: MATH226 is recommended, further suitable

modules include MATH228.

Pure Mathematics Pathway: MATH247 is strongly recommended, MATH242 is recommended.

Statistics, Probability and Operational Research Pathway: MATH254 is compulsory, MATH269 is recommended, further suitable modules include MATH226, MATH242 and MATH260.

Theoretical Physics Pathway: MATH228 is compulsory.

Modules

Compulsory modules	Credits
DIFFERENTIAL EQUATIONS (MATH221)	15
VECTOR CALCULUS WITH APPLICATIONS IN FLUID MECHANICS (MATH225)	15
LINEAR ALGEBRA AND GEOMETRY (MATH244)	15
STATISTICS AND PROBABILITY I (MATH253)	15
COMPLEX FUNCTIONS (MATH243)	15
METRIC SPACES AND CALCULUS (MATH241)	15

Optional modules	Credits
CLASSICAL MECHANICS (MATH228)	15
METRIC SPACES AND CALCULUS (MATH242)	15
COMMUTATIVE ALGEBRA (MATH247)	15
STATISTICS AND PROBABILITY II (MATH254)	15

Optional modules	Credits
FINANCIAL MATHEMATICS (MATH260)	15
OPERATIONAL RESEARCH: LINEAR AND CONVEX METHODS (MATH269)	15
STEM EDUCATION AND COMMUNICATION (MATH291)	15
NUMERICAL METHODS (MATH226)	15

Programme details and modules listed are illustrative only and subject to change.

Year three

In year three, you will choose some compulsory and some optional modules from the list below. Please note that we regularly review our teaching so the choice of modules may change.

Depending on the chosen pathway, the following modules are compulsory:

Applied Mathematics: MATH323, MATH324, MATH335.

Pure Mathematics: MATH342, MATH343, MATH349.

Statistics, Probability and Operational Research: MATH360, MATH362, MATH363.

Theoretical Physics: MATH323, MATH325, MATH326.

Modules

Optional modules	Credits
FURTHER METHODS OF APPLIED MATHEMATICS (MATH323)	15
CARTESIAN TENSORS AND MATHEMATICAL MODELS OF SOLIDS AND VISCOUS FLUIDS (MATH324)	15
QUANTUM MECHANICS (MATH325)	15

Optional modules	Credits
RELATIVITY (MATH326)	15
NUMBER THEORY (MATH342)	15
GROUP THEORY (MATH343)	15
DIFFERENTIAL GEOMETRY (MATH349)	15
APPLIED PROBABILITY (MATH362)	15
LINEAR STATISTICAL MODELS (MATH363)	15
GAME THEORY (MATH331)	15
NUMERICAL METHODS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS (MATH336)	15
COMBINATORICS (MATH344)	15
THE MAGIC OF COMPLEX NUMBERS: COMPLEX DYNAMICS, CHAOS AND THE MANDELBROT SET (MATH345)	15
TOPOLOGY (MATH346)	15
APPLIED STOCHASTIC MODELS (MATH360)	15
THEORY OF STATISTICAL INFERENCE (MATH361)	15
MEDICAL STATISTICS (MATH364)	15
MEASURE THEORY AND PROBABILITY (MATH365)	15
MATHEMATICAL RISK THEORY (MATH366)	15

Optional modules	Credits
NETWORKS IN THEORY AND PRACTICE (MATH367)	15
STOCHASTIC THEORY AND METHODS IN DATA SCIENCE (MATH368)	15
MORE IS DIFFERENT: STATISTICAL MECHANICS, THERMODYNAMICS, AND ALL THAT (MATH327)	15
PROFESSIONAL PROJECTS AND EMPLOYABILITY IN MATHEMATICS (MATH390)	15
MATHEMATICAL BIOLOGY (MATH335)	15
MATHEMATICS OF NETWORKS AND EPIDEMICS (MATH338)	15
MATHS SUMMER INDUSTRIAL RESEARCH PROJECT (MATH391)	15
MATHEMATICS INTERNSHIP (MATH309)	15

Programme details and modules listed are illustrative only and subject to change.

Teaching and assessment

How you'll learn

You will be taught through a diverse blend of engaging teaching methods, including lectures, tutorials, practical classes, video content, interactive learning sessions, independent study, and supervised project work.

The department of mathematical sciences offers a vibrant, stimulating, and supportive learning environment with highly motivated and exceptionally qualified staff, renowned for their world-leading research and teaching.

In year 1, lectures are supplemented by a thorough system of small-group tutorials; computing work is carried out in supervised practical classes. Key study skills, presentation skills and group work start in the first year and are developed later in the programme. The emphasis in most modules is on the development

of problem-solving and critical thinking skills, which are regarded very highly by employers.

How you're assessed

Each module has an assessment scheme tailored to fit its syllabus. This might include traditional written exams, class tests, assignments, projects, group work, or online exercises with automatic marking and immediate feedback.

Liverpool Hallmarks

We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.

The Liverpool Curriculum framework sets out our distinctive approach to education. Our teaching staff support our students to develop academic knowledge, skills, and understanding alongside our **graduate attributes**:

- Digital fluency
- Confidence
- Global citizenship

Our curriculum is characterised by the three **Liverpool Hallmarks**:

- Research-connected teaching
- Active learning
- Authentic assessment

All this is underpinned by our core value of **inclusivity** and commitment to providing a curriculum that is accessible to all students.

Careers and employability

A degree in mathematics provides access to an almost limitless range of rewarding career paths. As a graduate with a mathematics degree from the University of Liverpool, you'll have an extremely valuable set of analytical and critical thinking skills that employers value, enabling you to pursue careers in almost any field.

Graduates with a mathematics-based degree are in high demand across a broad spectrum of industries, thanks to their expertise in quantitative analysis, problemsolving, and mathematical modelling. Some of the key career paths include:

- Data Science and Analytics: Mathematics graduates are well-equipped to work as data scientists, data analysts, or business analysts. Their skills in statistical modelling, machine learning, and data interpretation are highly sought after in sectors like finance, healthcare, and tech.
- Engineering and Technology: Mathematics graduates can work in engineering roles, including systems engineering, computational modelling, and simulation.
 They may also contribute to software development, particularly in fields that require complex algorithms, like AI and cybersecurity.
- Operations Research and Logistics: Companies in manufacturing, transportation, and supply chain management often hire mathematics graduates to optimise processes, improve efficiency, and reduce costs. Roles include operations research analyst, supply chain planner, and logistics coordinator.
- Healthcare and Biostatistics: Mathematics is increasingly used in medical research, epidemiology, and healthcare analytics. Careers may include a biostatistician, a health data analyst, or a mathematical modeller in disease forecasting.

The versatility of a mathematics-based degree allows graduates to enter nearly any sector that requires mathematical modelling, statistical analysis, and algorithmic problem-solving. The growing demand for data-driven decision making in today's world ensures that career prospects remain strong, with opportunities for advancement and specialisation across fields.

Fees and funding

Your tuition fees, funding your studies, and other costs to consider.

Tuition fees

UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland)

Full-time place, per year - £9,535 Year abroad fee - £1,385 (applies to year in China)

International fees

Full-time place, per year - £29,500 Year abroad fee - £14,750 (applies to year in China)

Please note, UK full-time fees and year abroad fees, as well as year in industry fees for both UK and international are for the academic year 2025/26. 2026/27 fees have yet to be confirmed. Please be advised that tuition fees are subject to increase each year.

Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. Learn more about paying for your studies.

Additional costs

Your tuition fee covers almost everything but you may have <u>additional study costs</u> to consider, such as books.

Find out more about the <u>additional study costs</u> that may apply to this course.

Entry requirements

The qualifications and exam results you'll need to apply for this course.

A levels

ABB

including Mathematics A level grade A.

Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is **ABC** with **A** in the EPQ.

You may automatically qualify for reduced entry requirements through our contextual offers scheme. Based on your personal circumstances, you may automatically qualify for up to a two-grade reduction in the entry requirements needed for this course. When you apply, we consider a range of factors – such as where you live – to assess if you're eligible for a grade reduction. You don't have to make an application for a grade reduction – we'll do all the work.

Find out more about how we make reduced grade offers.

If you don't meet the entry requirements, you may be able to complete a foundation year which would allow you to progress to this course.

Available foundation years:

• <u>Mathematical Sciences BSc (Hons) (Foundation, 4 year route with Carmel College)</u> BSc (Hons)

T levels

T levels are not currently accepted.

GCSE

4/C in English and 4/C in Mathematics

Subject requirements

Applicants must have studied Mathematics at Level 3 within 2 years of the start date of their course.

For applicants from England: For science A levels that include the separately graded practical endorsement, a "Pass" is required.

BTEC Level 3 National Extended Diploma

D*DD in relevant diploma, when combined with A Level Mathematics grade A.

International Baccalaureate

32 points overall with no score less than 4 including 6 in HL Mathematics, or pass the IB Diploma plus 6,5,5 in three HL subjects (including 6 in HL Mathematics).

Irish Leaving Certificate

H1, H2, H2, H2, H3, H3 including Mathematics at H1.

Scottish Higher/Advanced Higher

Advanced Highers accepted at grades ABB including grade A in Mathematics.

Welsh Baccalaureate Advanced

B in the Welsh Baccalaureate, plus AB at A level (including grade A in Mathematics).

Access

Pass Access to HE Diploma in a relevant subject with 45 Level 3 credits, with 33 at Distinction (including 15 credits in Mathematics) and 12 at Merit.

International qualifications

Select your country or region to view specific entry requirements.

If you hold a bachelor's degree or equivalent, but don't meet our entry requirements, you could be eligible for a Pre-Master's course. This is offered on campus at the <u>University of Liverpool International College</u>, in partnership with Kaplan International Pathways. It's a specialist preparation course for postgraduate study, and when you pass the Pre-Master's at the required level with good attendance, you're guaranteed entry to a University of Liverpool master's degree.

English language requirements

You'll need to demonstrate competence in the use of English language, unless you're from a majority English speaking country.

We accept a variety of <u>international language tests</u> and <u>country-specific qualifications</u>.

International applicants who do not meet the minimum required standard of English language can complete one of our <u>Pre-Sessional English courses</u> to achieve the required level.

IELTS

6.0 overall, with no component below 5.5

TOEFL IBT

78 overall, with minimum scores of listening 17, writing 17, reading 17 and speaking 19. TOEFL Home Edition not accepted.

Duolingo English Test

115 overall, with speaking, reading and writing not less than 105, and listening not below 100

Pearson PTE Academic

59 overall, with no component below 59

LanguageCert Academic

65 overall, with no skill below 60

Cambridge IGCSE First Language English 0500

Grade C overall, with a minimum of grade 2 in speaking and listening. Speaking and listening must be separately endorsed on the certificate.

Cambridge IGCSE First Language English 0990

Cambridge IGCSE Second Language English 0510/0511

0510: Grade C overall, with a minimum of grade 2 in speaking. Speaking must be separately endorsed on the certificate. 0511: Grade C overall.

Cambridge IGCSE Second Language English 0993/0991

0993: Grade 5 overall, with a minimum of grade 2 in speaking. Speaking must be separately endorsed on the certificate. 0991: Grade 5 overall.

Cambridge ESOL Level 2/3 Advanced

169 overall, with no paper below 162

International Baccalaureate English A: Literature or Language & Literature

Grade 4 at Standard Level or grade 4 at Higher Level

International Baccalaureate English B

Grade 6 at Standard Level or grade 5 at Higher Level

Pre-sessional English

Do you need to complete a Pre-sessional English course to meet the English language requirements for this course?

The length of Pre-sessional English course you'll need to take depends on your current level of English language ability.

Pre-sessional English in detail

If you don't meet our English language requirements, we can use your most recent IELTS score, or <u>the equivalent score in selected other English language</u> <u>tests</u>, to determine the length of Pre-sessional English course you require.

Use the table below to check the course length you're likely to require for your current English language ability and see whether the course is available on campus or online.

Your most recent IELTS score	Pre-sessional English course length	On campus or online
5.5 overall, with no component below 5.5	6 weeks	On campus
5.5 overall, with no component below 5.0	10 weeks	On campus and online options available
5.0 overall, with no component below 5.0	12 weeks	On campus and online options available
5.0 overall, with no component below 4.5	20 weeks	On campus
4.5 overall, with no component below 4.5	30 weeks	On campus
4.0 overall, with no component below 4.0	40 weeks	On campus

If you've completed an alternative English language test to IELTS, we may be able to use this to assess your English language ability and determine the Presessional English course length you require.

Please see our guide to <u>Pre-sessional English entry requirements</u> for IELTS 6.0 overall, with no component below 5.5, for further details.

Alternative entry requirements

- If your qualification isn't listed here, or you're taking a combination of qualifications, contact us for advice
- Applications from mature students are welcome.

∧ Back to top

Generated: 17 Oct 2025, 21:42

© University of Liverpool