

MSc (Eng)

Electronic Engineering and the Internet of Things with a Year in Industry

Entry requirements

2:2 degree

Study mode

Full-time

Duration

24 months

Apply by: **11 September 2026**

Starts on: **28 September 2026**

Join us at our Postgraduate Open Events

Meet us on campus or online in March 2026 to find out more about master's degrees and research opportunities at Liverpool.

[Register now](#)

About this course

On this well-established MSc programme, you will develop advanced knowledge and skills in key aspects of electronic engineering and the Internet of Things. The course content is updated annually to maintain industry relevance and to reflect the latest developments in the industry.

Introduction

The first year of this MSc follows the same structure as the one-year MSc programme. On this programme we build your foundational knowledge through our core topics which include embedded computer systems, digital system design, IC design, microprocessor systems, the Internet of Things and research skills and project management.

We also cover digital design techniques, you will be introduced to materials used in microelectronics, and develop an understanding of designing advanced embedded computer systems – along with a module that will help you to develop the practical skills to develop your final project in semester three.

You'll be able to develop your specialism through optional modules, where you can learn the fundamentals of image processing, the principles of communications networks, the theoretical and practical aspects of parallel programming for multi-core architectures, and an introduction to electrical plasma and how it can be used in microelectronics.

In Year two you will undertake an industrial project and placement (either in the UK or overseas), typically 30 weeks from September to next June. During the placement year you will spend time working in a relevant company suitable for the MSc. This is an

excellent opportunity to gain practical engineering experience which will boost your CV, build networks and develop confidence in a working environment. Many placement students continue their relationship with the placement provider by undertaking relevant projects and may ultimately return to work for the company when they graduate.

Please note: We constantly review and develop our postgraduate programmes. This MSc is also available with the alternative title Microelectronic Systems with a Year in Industry MSc for entry September 2026, and gives students the option to graduate with either of these two MSc titles.

Who is this course for?

This course is aimed at graduates who already have a good general level of knowledge and understanding in electronics or closely related subjects with advanced knowledge (at level M) and capabilities in the specific areas of electronic engineering.

What you'll learn

- Develop an understanding of the issues in designing complex digital and analogue systems
- Understanding the capabilities of tools used for the design and simulation of these complex systems
- Build your understanding of signal processing using digital systems.
- Understanding of the “Internet of Things”, from the basics describing its evolution to its architecture and its application to real-life scenarios .
- Get an awareness of the techniques used for the networking of digital systems
- Knowledge and skills in software engineering, design and management.
- Transferable skills such as analysis, problem-solving, communication and team-working.

Accreditation

This course is pending accreditation by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for Further

Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

[↖ Back to top](#)

Course content

Discover what you'll learn, what you'll study, and how you'll be taught and assessed.

Year one

Semester one

In your first semester, you will develop your practical programming and coding skills by creating software for engineering applications, and an introduction to the “Internet of Things”.

Modules that will cover Semesters one and two will cover digital design techniques, introduce you to materials used in microelectronics, and give you an understanding of designing advanced embedded computer systems – along with a module that will help you to develop the practical skills to develop your final project in semester three.

Semester two

Your second semester will introduce you to ARM Cortex M Microprocessors. You'll learn about the general functionality, learn to interface a peripheral to the AHB-Lite bus using microprocessors, and use RTX to implement a multi-threaded application.

You will continue to develop your knowledge of materials, and digital design skills while building the knowledge you'll need for your research project – moving into project planning and literature searching.

You'll also have the choice to learn about the principles of communications networks, their components and protocols; develop an in-depth understanding of EMC, the scope of EMC, standards, typical EMC problems and solutions; and get an extensive overview of information theory and coding.

Students must take 15 optional credits. Modules may be selected from this list subject to the requirement that at least 7.5 credits are completed in Semester one.

Modules

Compulsory modules	Credits
<u>ADVANCED LOW POWER COMPUTER ARCHITECTURE (ELEC470)</u>	15
<u>DIGITAL SYSTEM DESIGN (ELEC473)</u>	15
<u>INTEGRATED CIRCUITS – CONCEPTS AND DESIGN (ELEC472)</u>	15
<u>RESEARCH SKILLS & PROJECT MANAGEMENT (ELEC483)</u>	15
<u>ENGINEERING PROGRAMMING (ELEC431)</u>	15
<u>THE INTERNET OF THINGS: ARCHITECTURE AND APPLICATIONS (ELEC423)</u>	15
<u>MICROPROCESSOR SYSTEMS (ELEC422)</u>	15
Optional modules	Credits
<u>ADVANCED SYSTEMS MODELLING & CONTROL (ELEC476)</u>	15
<u>IMAGE PROCESSING (ELEC319)</u>	7.5
<u>MOBILE COMMUNICATIONS AND SECURITY (ELEC463)</u>	15
<u>MULTI-CORE AND MULTI-PROCESSOR PROGRAMMING (COMP528)</u>	15
<u>OPTIMISATION (COMP557)</u>	15
<u>PLASMA SYSTEM ENGINEERING (ELEC391)</u>	7.5
<u>COMMUNICATIONS NETWORKS (ELEC461)</u>	15
<u>ELECTROMAGNETIC COMPATIBILITY (ELEC382)</u>	7.5

Optional modules	Credits
<u>INFORMATION THEORY AND CODING (ELEC415)</u>	7.5

Programme details and modules listed are illustrative only and subject to change.

Year two

In Year two you will undertake an industrial project and placement.

The University of Liverpool has a dedicated team to help students find a suitable placement. Preparation for the placement is provided by the University's Careers and Employability Services (CES) who assist students in finding a placement, help students produce a professional CV and prepare students for placement interviews. Placements can be near or far in the UK or overseas.

The University has very good links with industry; companies (such as ARM Plc) have offered our MSc students competitive placements. Although industry placements are not guaranteed, the University offers students opportunities and support throughout the process to ensure that the chance for a student to find a placement is high.

If you are unable to secure a suitable placement by the end of April during Year one, you will be transferred onto the one-year MSc to undertake the MSc project over the summer and graduate after one year.

Modules

Compulsory modules	Credits
<u>MSC PLACEMENT EXPERIENCE (ELEC498)</u>	60
<u>MSC INDUSTRIAL PROJECT (ELEC499)</u>	60

Programme details and modules listed are illustrative only and subject to change.

Teaching and assessment

How you'll learn

You will learn by attending lectures, laboratory sessions, tutorials and doing your own research on a specific topic. You are expected to complete all the set coursework and exercises as it is an important part of your learning. You will have the opportunity to have hands-on training during your industrial placement.

How you're assessed

You will be assessed through various methods including final exams, quizzes, exercises, laboratory reports, presentations, oral examinations and a report writing.

Liverpool Hallmarks

We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.

The Liverpool Curriculum framework sets out our distinctive approach to education. Our teaching staff support our students to develop academic knowledge, skills, and understanding alongside our **graduate attributes**:

- Digital fluency
- Confidence
- Global citizenship

Our curriculum is characterised by the three **Liverpool Hallmarks**:

- Research-connected teaching
- Active learning
- Authentic assessment

All this is underpinned by our core value of **inclusivity** and commitment to providing a curriculum that is accessible to all students.

Careers and employability

This MSc degree programme is the basis for a career in a profession that offers an extremely wide choice of employment opportunities in engineering, research and development, project management, finance and many more.

The placement year will strengthen your career options by, undertaking the project work in an industrial setting, applying theory learnt in the classroom to real-world practice, developing communications and interpersonal skills, and building networks and knowledge which will be invaluable throughout your career.

The University of Liverpool is one of the most targeted universities by top employers, according to [**The Graduate Market 2024, High Fliers Research**](#). This means our graduates are in demand for employment and sought after by top employers worldwide.

Qualifying with an Electronic Engineering and the Internet of Things MSc degree from Liverpool will equip you with the knowledge, skills and confidence to explore a vast range of opportunities across the globe, in leading companies at the forefront of technology.

The graduates of this programme will be qualified across a broad range of subjects related to the electrical engineering and electronic engineering profession. They take up postgraduate training positions in design, development, research, manufacturing and consultancy with leading engineering companies, in order to pursue professional qualifications.

Others join smaller engineering companies to pursue professional qualifications while establishing themselves in engineering positions. Some graduates move into non-engineering positions where their analytical, communications and IT skills as well as technical background are much sought-after.

The main career opportunities for graduates from this programme are:

- Companies related to electronics and microelectronics systems
- Companies utilising the latest technology to deal with problems requiring microelectronics solutions at relatively high technical levels
- Companies and government agencies using managing microelectronics systems aspects
- Universities for further education, such as studying for PhD degree

Career support from day one to graduation and beyond

Career planning

From education to employment

Networking events

^ [Back to top](#)

Fees and funding

Your tuition fees, funding your studies, and other costs to consider.

Tuition fees

UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland)

Full-time place, per year – £14,000

Year in industry fee – £2,800

International fees

Full-time place, per year – £34,000

Year in industry fee – £6,800

Tuition fees are for the academic year 2026/27.

Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support.

- You can pay your tuition fees in instalments.
- All or part of your tuition fees can be funded by external sponsorship.
- International applicants who accept an offer of a place will need to pay a tuition fee deposit.

If you're a UK national, or have settled status in the UK, you may be eligible to apply for a Postgraduate Loan worth up to £12,167 to help with course fees and living costs. Learn more about paying for your studies.

Additional costs

We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This could include buying a laptop, books, or stationery.

Find out more about the additional study costs that may apply to this course.

^ [Back to top](#)

Entry requirements

The qualifications and exam results you'll need to apply for this course.

Postgraduate entry requirements

We accept a 2:2 honours degree from a UK university, or an equivalent academic qualification from a similar non-UK institution. This degree should be in a relevant subject, for example Mathematics, Engineering or Physical Sciences.

International qualifications

[Select your country or region to view specific entry requirements.](#)

Many countries have a different education system to that of the UK, meaning your qualifications may not meet our entry requirements. Completing your Foundation Certificate, such as that offered by the [University of Liverpool International College](#), means you're guaranteed a place on your chosen course.

English language requirements

You'll need to demonstrate competence in the use of English language, unless you're from a [majority English speaking country](#).

We accept a variety of [international language tests](#) and [country-specific qualifications](#).

International applicants who do not meet the minimum required standard of English language can complete one of our [Pre-Sessional English courses](#) to achieve the required level.

IELTS

6.5 overall, with no component below 5.5

Duolingo English Test

125 overall, with speaking, reading and writing not less than 105, and listening not below 100. For academic year 2025/26 only, we will also accept the production, literacy, comprehension and conversation score set: 120 overall, with no component below 95.

Pre-sessional English

Do you need to complete a Pre-sessional English course to meet the English language requirements for this course?

The length of Pre-sessional English course you'll need to take depends on your current level of English language ability.

Pre-sessional English in detail

If you don't meet our English language requirements, we can use your most recent IELTS score, or [the equivalent score in selected other English language tests](#), to determine the length of Pre-sessional English course you require.

Use the table below to check the course length you're likely to require for your current English language ability and see whether the course is available on campus or online.

Your most recent IELTS score	Pre-sessional English course length	On campus or online
6.0 overall, with no component below 5.5	6 weeks	On campus or online
5.5 overall, with no more than one component at 5.0	10 weeks	On campus or online
5.5 overall, with no component below 5.0	12 weeks	Online
5.0 overall, with no component below 5.0	20 weeks	On campus

Your most recent IELTS score	Pre-sessional English course length	On campus or online
5.0 overall, with no component below 4.5	30 weeks	On campus
4.5 overall, with no more than one component at 4.0	40 weeks	On campus

If you've completed an alternative English language test to IELTS, we may be able to use this to assess your English language ability and determine the Pre-sessional English course length you require.

Please see our guide to [Pre-sessional English entry requirements](#) for IELTS 6.5 overall, with no component below 5.5, for further details.

↖ [Back to top](#)

Generated: 5 Feb 2026, 20:11

© University of Liverpool