Chemistry with Research in Industry MChem

COURSE DETAILS
- A level requirements: AAB
- UCAS code: F161
- Study mode: Full-time
- Length: 4 years

KEY DATES
- Apply by: 31 January 2024
- Starts: 23 September 2024

Course overview
Do you want to pursue a high-level research career as a professional chemist? This course brings you to the frontiers of chemistry where you will join one of the research teams in the department after a year of industrial research experience.

INTRODUCTION
Study Chemistry at Liverpool and learn in a culture of research excellence. Chemistry is a great choice for those with a keen interest in materials chemistry, medicinal chemistry and theoretical and computation chemistry. You’ll thrive in our award-winning undergraduate laboratories. All our chemistry programmes have a common core in the first two years, this provides a good measure of flexibility and choice for you during the first two years. These first two years progress rapidly, with a mix of theory and practical modules to give you a solid grounding in the subject.

In year three you take up your paid industrial placement (recent examples of employers are AstraZeneca, Beckmann Coulter (China), Dyesol, Ineos, GlaxoSmithKline (UK and US), Johnson Matthey, Reckitt Benckiser, and Sigma-Aldrich). While you are on placement, you take a specially developed chemistry module by distance learning that covers the core chemistry studied by the third year students not taking up placements. If you choose not to take up a placement, you can transfer onto the MChem Chemistry (F102) programme in year two or at the start of year three.

In your final year, you will take a range of advanced core modules in inorganic, physical and organic chemistry and can tailor your studies to choose high-level modules in areas that interest you and that are related to our research areas. Chemical research is particularly important in year four and involves you conducting a significant project as a member of one of the research groups in the Department.
Since students enter the Department with a wide range of experience in mathematics (which is essential for studying chemistry to a high level) we provide a flexible tiered maths for chemistry course allowing you to develop your skills at your own pace.

WHAT YOU’LL LEARN

- Practical application of chemistry
- Material chemistry
- Energy and catalysis
- Functional interfaces
- Medicine and bio-nano chemistry
- Theoretical and computational chemistry
- Renewable and sustainable chemistry
- Numeracy and problem solving
- Working in a research and industrial environment

ACCREDITATION

Our MChem programmes have bachelor accreditation from the Royal Society of Chemistry (RSC) ensuring your degree with us will set you on the pathway to a successful career.
Course content
Discover what you’ll learn, what you’ll study, and how you’ll be taught and assessed.

YEAR ONE
In the first year, you will take modules that cover the fundamentals of Inorganic, Organic and Physical Chemistry, plus necessary key skills.

Four Chemistry modules combine theoretical and practical aspects and one Chemistry module develops Quantitative and General Key Skills. You will spend three to six hours per week in the laboratory and so will receive a comprehensive training in practical aspects of the subject.

You will have a choice of 30 credits of subsidiary modules from other Departments including Environmental Sciences, Life Sciences (Anatomy, Molecular biology, Biochemistry, Pharmacology or Physiology), Mathematics, Physics and Archaeology.

There are also optional courses within chemistry covering, for example the chemistry–biology interface, and in the second semester you can opt to take a research inspired course Innovative chemistry for energy and materials delivered by staff in the Stephenson Institute for Renewable Energy.

COMPULSORY MODULES

INTRODUCTORY INORGANIC CHEMISTRY (CHEM111)
Credits: 15 / Semester: semester 1
This module gives an introduction to the chemistry of the main group elements, using the periodic table as the underpinning framework for understanding this chemistry, and develops students’ analytical chemistry skills including volumetric and spectrophotometric techniques applied to materials that are familiar in everyday life.

INTRODUCTORY ORGANIC CHEMISTRY (CHEM130)
Credits: 30 / Semester: whole session
An Introduction to Organic Chemistry consisting of lectures, workshops and laboratory classes assessed continuously and by four class tests

INTRODUCTORY PHYSICAL CHEMISTRY (CHEM152)
Credits: 15 / Semester: semester 2
This module builds on the thermodynamics and kinetics that students have studied prior to University. Learning is supported by both problem-solving workshops and undertaking experiments in the laboratory
INTRODUCTORY SPECTROSCOPY (CHEM170)

Credits: 15 / Semester: whole session

This module will provide an introduction to a variety of spectroscopic techniques. Students will explore the theory underpinning various spectroscopic methods, how they are put into practice when acquiring spectra, and the interpretation of spectra to identify unknown substances.

KEY SKILLS FOR CHEMISTS 1 (CHEM180)

Credits: 15 / Semester: whole session

The aim of this module is: (i) to equip students with the basic quantitative transferable skills required for the first year of a Chemistry degree programme. (ii) to broaden a student’s perspective of chemistry whilst developing their general transferable skills focusing on communication and employability. The overarching learning outcome is for students to have the key skills that will equip them to perform well in the rest of their chemistry degree programme.

Quantitative Key Skills will be taught using a lecture/workshop format involving problem solving classes, using computers where necessary. General Key Skills will involve a series of lecture-based presentations given by staff from the Department of Chemistry and the Careers Service together with a database workshop and small group tutorials. Extensive use of online platforms will be made.

OPTIONAL MODULES

FOUNDATIONS OF MEDICINAL CHEMISTRY (CHEM141)

Credits: 15 / Semester: semester 1

This module will introduce the area of medicinal chemistry and the underpinning cellular biology where it is applied. The course will delve into the chemical aspects of molecular and cellular biology and the processes that allow life to exist, and subsequently discuss the key cellular targets of interest to a medicinal chemist in the drug design process. This material will form the foundations needed to progress onto higher years of medicinal chemistry where modern case studies and the principles of pharmacology will be looked at in greater depth.

INNOVATIVE CHEMISTRY FOR ENERGY AND MATERIALS (CHEM184)

Credits: 15 / Semester: semester 2

The module covers a wide variety of topics in the area of innovative chemistry for energy and materials. This will act as an introduction to these areas to enable the student to pursue their interests to a deeper level independently, and to provide a foundation level knowledge in materials and electrochemistry, to be expanded in subsequent core and optional chemistry modules.
YEAR TWO

You will learn more advanced topics within all the main branches of Chemistry and continue to develop your quantitative and key skills.

Practical skills will be developed through stand-alone practical modules and you will have the opportunity to spend between six and nine hours per week in the laboratory.

During this year, students will be seeking their industrial placements and so you will also receive help in writing an attractive CV to showcase your skills and interview technique, with mock interviews being provided.

COMPULSORY MODULES

COORDINATION AND ORGANOMETALLIC CHEMISTRY OF THE D-BLOCK METALS (CHEM214)
Credits: 15 / Semester: semester 2

The module introduces the descriptive coordination and organometallic chemistry and the concepts underpinning our understanding of this chemistry.

INORGANIC APPLICATIONS OF GROUP THEORY (CHEM316)
Credits: 7.5 / Semester: semester 2

This module shows how an understanding of the symmetry properties of molecules can be applied to the understanding of spectroscopic selection rules and bonding.

KEY SKILLS FOR CHEMISTS 2 (CHEM280)
Credits: 15 / Semester: whole session

This module aims to (i) further develop the quantitative skills of a student, (ii) introduce students to the Chemistry Key Skill of Molecular Modelling, and (iii) maintain student development of general transferable and employability skills. The overarching learning outcome is that students will gain the necessary key skills to perform well in their chemistry degree programmes. By the end of the module students will have improved their ability to perform and apply mathematical techniques to problems in kinetics, thermodynamics, quantum mechanics and molecular symmetry. They will have developed abilities to employ force-field and Quantum Chemistry techniques in Molecular Modelling using the Spartan package. They will also have further developed their range of transferable and employability skills, including written and oral communication and team working.

MEASUREMENTS IN CHEMISTRY (CHEM246)
Credits: 15 / Semester: semester 2

This is a practical module in which students learn the practice of taking physical measurements, the critical analysis and evaluation of experimental data, the application of measurements to the study of chemical phenomena and the dissemination of results.
ORGANIC CHEMISTRY II (CHEM231)
Credits: 15 / Semester: semester 1
This module is the core Organic Chemistry module for Year 2 Chemistry students. It introduces important carbon-carbon bond forming reactions within a mechanistic and synthetic framework, together with exposure to a selection of stereochemical issues.

PREPARATIVE CHEMISTRY: SYNTHESIS AND CHARACTERISATION (CHEM245)
Credits: 15 / Semester: semester 1
The module presents a unified approach to the synthesis and characterisation of organic and inorganic compounds, introducing a range of synthetic techniques, experiments and analytical methods.

PHYSICAL CHEMISTRY II (CHEM260)
Credits: 15 / Semester: whole session
This module expands on the fundamentals of Physical Chemistry that were introduced in Year 1. The principles and applications of thermodynamics, kinetics and spectroscopy are covered in detail with more emphasis on derivation of key results than in Year 1. Quantum mechanics is developed from the basic principles and mathematical description of quantum phenomena. It is applied to describe bonding in small molecules and in solids, and is linked to spectroscopy via detailed description of molecular energy levels and the possible transitions between these permitted by quantum mechanics.

OPTIONAL MODULES
AN INTRODUCTION TO MEDICINAL CHEMISTRY (CHEM248)
Credits: 7.5 / Semester: semester 2
This module introduces students to the fundamental principles that underpin modern medicinal chemistry.

APPLIED ANALYTICAL CHEMISTRY (CHEM286)
Credits: 7.5 / Semester: semester 2
This is an introductory module that aims to illustrate the fundamental theoretical principles of selected instrumental analytical techniques (NMR spectroscopy, mass-spectrometry, ICP-OE(ESI)MS spectroscopy, separation and hyphenated techniques) in the context of their roles in industrial and academic research, to include chemical and pharmaceutical analysis.
CHEMISTRY FOR SUSTAINABLE TECHNOLOGIES (CHEM284)

Credits: 7.5 / Semester: semester 2

This module introduces the basic concepts of sustainability and sustainable development, particularly in relation to their technological underpinnings. The module will address the role of chemistry in relation to broad societal, environmental and developmental questions. The module also gives a fundamental understanding of the principles and technologies in Green Chemistry and the generation of Renewable Energy and Chemicals.

FUNCTIONAL ORGANIC MATERIALS (CHEM241)

Credits: 15 / Semester: semester 1

Organic functional materials are of increasing global importance with applications in energy, medicine and electronics. This module will highlight how functional organic materials such as high-performance polymers, crosslinked polymers and composites, and porous materials can be designed for specific applications. The module will also explain how advanced characterisation methods (including scattering techniques, gas sorption, size exclusion chromatography, thermogravimetric analysis, tensile measurement, and electron microscopy) are used in the development of modern materials. Additionally, this module will provide an introduction to polymers, outlining aspects of polymer synthesis, properties and characterisation. Some of the history, importance, and current issues of polymeric materials – such as sustainability – will be discussed to provide an understanding of the wider context. CHEM241 will be useful to chemists who wish to develop a deeper understanding of how organic compounds can be designed to provide functional materials.

SCIENCE COMMUNICATION (CHEM390)

Credits: 15 / Semester: whole session

This module gives students the generic skills required for teaching science to school pupils from Years 5 to 7, including basic training in safeguarding. Students then work in pairs or groups of three to develop practical chemistry sessions and deliver them in the Central Teaching Laboratory to visiting groups from local schools.

Programme details and modules listed are illustrative only and subject to change.

YEAR THREE

Your third year will be spent on a paid industrial placement. Since you will be returning from placement into the fourth year of the MChem programme, you also need to cover the core chemistry of the regular year three. This is done in specially developed distance learning modules supported by recorded lectures and special tutorial assignments. You will be required to write a final report on your research and performance during the year in industry, and this will contribute part of your mark for the year.
COMPULSORY MODULES

ADVANCED CHEMISTRY (DISTANCE LEARNING) (CHEM340)

Credits: 30 / Semester: whole session

This module extends second year knowledge of organic, inorganic and physical chemistry. This is a distance learning module in which students are expected to work through the course text books in conjunction with lecture notes and screencasts according to the schedule provided in CANVAS. Sets of assignment problems are set at two to three week intervals to assess progress.

YEAR IN INDUSTRY (MCHEM) (CHEM360)

Credits: 90 / Semester: whole session

Students spend 1 year on an industrial placement, working at the company. Students will be given opportunities and gain confidence to apply theory and practical skills in a real-time work environment. During the placement, the student will be expected to write a literature review and a final report, but the majority of the year will be spent concentrating on the industrial placement. These activities will provide opportunities to develop the student’s transferable skills and professional competence leading to enhanced employability.

Programme details and modules listed are illustrative only and subject to change.

YEAR FOUR

On returning from industry, you enter the fourth year of the MChem Chemistry programme. The final year of your programme will be dominated by the chemical research project which accounts for 60 of the 120 credits.

You will choose which branch of chemistry you wish to pursue research in (and usually also which research group you wish to be in), and work throughout the year on original research at the frontiers of chemistry.

You select four of the available optional modules each semester that best reflect your interests.
COMPULSORY MODULES

CHEM480 - CHEMICAL RESEARCH PROJECT (CHEM480)

Credits: 60 / Semester: whole session

The aim of this module is to develop the skills necessary to undertake independent chemical research. Students carry out a research project of their choice in an area that is presently active in the department and that is aligned with our research clusters in Energy and Catalysis, Materials Chemistry, Medicinal and Bio-Nano Chemistry, Functional Interfaces, Theoretical and Computational Chemistry. This is delivered by becoming a member of a research group led by academic staff of the Department of Chemistry and by carrying out experimental or theoretical/computational work as a member of that research group. In addition, the student’s skills in molecular modelling techniques in chemistry and chemical database skills are further developed and the student’s employability awareness and skills will be enhanced.

OPTIONAL MODULES

ADVANCED SPECTROSCOPY (C OPTION) (CHEM451)

Credits: 7.5 / Semester: semester 1

This is an advanced module that introduces the student to modern spectroscopic techniques and their applications in materials characterisation. Emphasis is given to those techniques, which are currently most important to chemical research both in industry and academia. At the end of the module, students should be able to understand the basic physical principles of these techniques and be able to decide which combination of techniques is best employed to tackle a particular problem of materials characterisation.

APPLICATION OF ENZYMES IN ORGANIC SYNTHESIS - INDUSTRIAL BIOTECHNOLOGY (CHEM486)

Credits: 7.5 / Semester: semester 2

The aim of this module is to provide students with a knowledge and understanding of the application of enzymes in organic synthesis with a focus on selectivity and sustainability. Selected industrial examples will illustrate where biocatalysis can replace or be combined with conventional chemical reactions in drug synthesis. The module will include an introduction to molecular biology, exciting new developments in the field such as directed evolution for the creation of designer enzymes, creation of artificial enzymes by combining chemo-and biocatalysis and development of synthetic pathways using enzymes. Industrial biotechnology is an important area for a sustainable future and this module will provide a solid foundation from a chemistry perspective.

ASYMMETRIC CATALYSIS FOR ORGANIC AND PHARMACEUTICAL CHEMISTRY (CHEM496)

Credits: 7.5 / Semester: semester 2

The aim of the module is to introduce students to the main aspects of asymmetric catalysis and its application in synthetic organic chemistry.
ELECTROCHEMISTRY (C OPTION) (CHEM453)

Credits: 7.5 / Semester: semester 1

The aim of this module is to develop the students’ knowledge of interfacial electrochemistry. This includes both the understanding of fundamental aspects of electrochemistry, as well as techniques for characterising surfaces under electrochemical conditions. Applications of electrochemistry will also be discussed.

INTRODUCTION TO NANOMEDICINE (CHEM426)

Credits: 7.5 / Semester: semester 2

Nanomedicine is an increasingly important multidisciplinary, global science. This is an introductory module which aims to provide students with the essential knowledge required to understand the rapidly advancing field of Nanomedicine. Following some introductory lectures, students will undertake self-directed learning alongside lectures to examine leading published research related to the design of advanced nanomedicines and clinical trials. This module will be useful chemists who wish to develop a deeper understanding of colloid materials, gain a detailed insight into the advanced synthetic approaches used to produce nanomedicines and broaden their knowledge of pharmacology concepts.

MAIN GROUP ORGANIC CHEMISTRY (CHEM431)

Credits: 7.5 / Semester: semester 1

The aim of this module is to broaden and extend the knowledge of modern Organic Chemistry, so that students will be able to enter directly into a PhD program or embark on a career as a specialist chemist. By the end of the module students will have achieved a solid foundation in Organic Chemistry.

NANO ENERGY MATERIALS (CHEM482)

Credits: 7.5 / Semester: semester 2

The module will deal with nanoscale energy materials focusing on the aspects relevant to catalysis, electrocatalysis, plasmonic heating, batteries and thermal energy storage. Particular emphasis will be placed on the reasons why nanomaterials are desirable for energy storage applications. The goals of the module are (i) to introduce nanomaterials for energy storage; (ii) to introduce nanocarbons for thermal energy storage; (iii) to describe general methods for synthesis of nanomaterials.
ORGANIC AND MOLECULAR ELECTRONICS (CHEM413)

Credits: 7.5 / Semester: semester 1

This module is designed to give students in the chemical sciences an appreciation of the foundations and working principles underlying the new technologies of organic electronic devices, and of the possibilities offered by the new science of single-molecule electrical measurements.

PROTEIN STRUCTURE AND DYNAMICS (CHEM452)

Credits: 7.5 / Semester: semester 2

This module discusses the application of basic physical chemistry concepts for describing protein structure and dynamics and shows how advanced physical chemistry methods are used for investigating these important aspects of proteins.

SOLAR ENERGY CONVERSION (CHEM464)

Credits: 7.5 / Semester: semester 2

In part 1 the course covers the underpinning theory of electronic structure of solids relevant to solar energy conversion materials. In part 2 the course examines a range of established and developing solar energy conversion technologies using the concepts developed in part 1. The course revises and builds on the contents of core inorganic and physical chemistry modules from years 2 and 3.

SOLID STATE CHEMISTRY AND ENERGY STORAGE MATERIALS (CHEM442)

Credits: 7.5 / Semester: semester 2

The course will build upon foundations of descriptive aspects of solid state chemistry delivered in Year 1 (CHEM111) and more advanced topics delivered in Year 3 (CHEM313) to address a wide variety of research-led topics in the area of solid state chemistry synthesis and characterisation, with a focus on some of the relevant applications in energy materials. This will provide the student with a deep and high level understanding of the properties of solids, and currently active areas of research, to enable the student to pursue their interests to a deeper level independently (for example to PhD level).
SUPRAMOLECULAR CHEMISTRY (CHEM446)

Credits: 7.5 / Semester: semester 2

Supramolecular chemistry – or, "chemistry beyond the molecule" – covers a wide range of systems including host-guest systems, clathrates, cavitands, supramolecular polymers and gels, and makes use of non-covalent interactions. These weak and reversible forces—such as hydrogen bonds, hydrophobic forces, van der Waals forces, and metal–ligand coordination—are key to understanding biological processes and self-assembling systems, and to constructing complex materials and molecular machinery. This module is an introduction to this truly interdisciplinary and evolving field.

In this module, the students will be introduced to concepts such as molecular self-assembly, host-guest complexes and biological mimics. The course will also cover the latest developments in supramolecular chemistry, and highlight some of the key challenges in the field being addressed by researchers at Liverpool and beyond.

ASYMMETRIC SYNTHESIS AND SYNTHETIC STRATEGY (CHEM433)

Credits: 7.5 / Semester: semester 1

This module will develop and extend the students’ knowledge of modern organic chemistry, so that they will be able to enter directly into a PhD programme or embark on a career as a specialist chemist.

APPLIED ORGANIC CHEMISTRY: BIOSYNTHESIS AND INDUSTRIAL SYNTHESIS OF NATURAL PRODUCTS (CHEM436)

Credits: 7.5 / Semester: semester 2

This module focuses on the utility of organic chemistry for the industrial synthesis of a range of important natural products used in medicine, agriculture, food and perfume industry and domestic sector. It will help students to put a general knowledge of different classes of organic compounds and their reactivity into the context of real-world applications. The module will also highlight the history of discovery of some notable natural products and will demonstrate how rather obscure original findings were translated into successful industrial processes using recent developments in organic synthesis and catalysis.

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (CHEM471)

Credits: 7.5 / Semester: semester 1

This is an advanced module that aims to introduce the student to modern nuclear magnetic resonance (NMR) spectroscopic techniques and their applications in analytical chemistry. The students will be able to understand the basic physical principles of NMR and to decide how to use it to tackle a particular problem of molecules and materials characterisation.

Programme details and modules listed are illustrative only and subject to change.

HOW YOU’LL LEARN
Laboratory classes in years one and two prepare you for independent laboratory work in year three. In year three you will carry out mini research projects, applying learning in computational modelling and molecular visualisation that are introduced in year one. You will be able to perform your own calculations to underpin final year research projects.

HOW YOU’RE ASSESSED

You are assessed by examination at the end of each semester (January and May/June) and by continuous assessment of laboratory practicals, class tests, workshops, tutorials and assignments.

You have to pass each year of study before you are allowed to progress to the following year. Re-sit opportunities are available in September at the end of years one and two. If you take an industrial placement, a minimum standard of academic performance is required before you are allowed to embark on your placements. All years of study (with the exception of year one) contribute to the final degree classification.

LIVERPOOL HALLMARKS

We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.
Careers and employability

Our graduates develop a wide range of skills including numeracy, problem solving and IT in addition to scientific skills. Visits to the Department by leading companies such as GlaxoSmithKline and Unilever ensure that you make contact with prospective employers at key stages in your final year.

Typical careers of our graduates include

- assistant analyst
- development chemist
- research assistant
- site chemist

Recent employers:

- GlaxoSmithKline
- Unilever
- IOTA Nanosolutions Ltd
- Perstorp Caprolactones
- Shell
- Towers Watson
- United Utilities.

4 IN 5 CHEMISTRY STUDENTS FIND THEIR MAIN ACTIVITY AFTER GRADUATION MEANINGFUL.

Graduate Outcomes, 2018-19.
Fees and funding

Your tuition fee covers almost everything, but you may have additional study costs to consider, such as books, specialist equipment or field trips.

TUITION FEES

<table>
<thead>
<tr>
<th>UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time place, per year</td>
<td>£9,250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International fees</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time place, per year</td>
<td>£27,200</td>
</tr>
</tbody>
</table>

Fees are correct for the academic year 2024/25
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. Learn more about tuition fees, funding and student finance.

ADDITIONAL COSTS

We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This could include buying a laptop, books, or stationery.

Find out more about the additional study costs that may apply to this course.

SCHOLARSHIPS AND BURSARIES

We offer a range of scholarships and bursaries to provide tuition fee discounts and help with living expenses while at university.

Check out our Undergraduate Global Advancement Scholarship. This offers a tuition fee discount of up to £5,000 for eligible students starting an undergraduate degree from September 2024. There’s also the Liverpool Bursary which is worth £2,000 per year for eligible students.
Discover our full range of undergraduate scholarships and bursaries
Entry requirements

The qualifications and exam results you’ll need to apply for this course.

<table>
<thead>
<tr>
<th>Your qualification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>About our typical entry requirements</td>
</tr>
<tr>
<td>A levels</td>
<td>AAB</td>
</tr>
<tr>
<td></td>
<td>Applicants with the Extended Project Qualification (EPQ) are eligible for a</td>
</tr>
<tr>
<td></td>
<td>reduction in grade requirements. For this course, the offer is ABB with</td>
</tr>
<tr>
<td></td>
<td>A in the EPQ.</td>
</tr>
<tr>
<td></td>
<td>You may automatically qualify for reduced entry requirements through our</td>
</tr>
<tr>
<td></td>
<td>contextual offers scheme.</td>
</tr>
<tr>
<td>GCSE</td>
<td>4/C in English and 4/C in Mathematics</td>
</tr>
<tr>
<td>Subject requirements</td>
<td>For applicants from England: Where a science has been taken at A level</td>
</tr>
<tr>
<td></td>
<td>(Chemistry, Biology, Geology or Physics), a pass in the Science</td>
</tr>
<tr>
<td></td>
<td>practical of each subject will be required.</td>
</tr>
<tr>
<td>BTEC Level 3 National</td>
<td>Not Accepted</td>
</tr>
<tr>
<td>Extended Diploma</td>
<td></td>
</tr>
<tr>
<td>International Baccalaureate</td>
<td>35 points overall including 6 points from Chemistry at higher level</td>
</tr>
<tr>
<td>Irish Leaving Certificate</td>
<td>H1, H1, H2, H2, H2, H3 (including Chemistry and one other Science)</td>
</tr>
<tr>
<td>Scottish Higher/Advanced</td>
<td>Not accepted without Advanced Highers</td>
</tr>
<tr>
<td>Higher</td>
<td></td>
</tr>
</tbody>
</table>
Your qualification | Requirements
---|---
Welsh Baccalaureate Advanced | Accepted at grade B, including 2 science A levels at grades AA including Chemistry
Access | Not Accepted
International qualifications | Many countries have a different education system to that of the UK, meaning your qualifications may not meet our direct entry requirements. Although there is no direct Foundation Certificate route to this course, completing a Foundation Certificate, such as that offered by the University of Liverpool International College, can guarantee you a place on a number of similar courses which may interest you.

ALTERNATIVE ENTRY REQUIREMENTS

- If your qualification isn’t listed here, or you’re taking a combination of qualifications, contact us for advice
- Applications from mature students are welcome.