Civil Engineering MEng

COURSE DETAILS
- A level requirements: AAA
- UCAS code: H202
- Study mode: Full-time
- Length: 4 years

KEY DATES
- Apply by: 25 January 2023
- Starts: 25 September 2023

Course overview
Civil engineers are responsible for the design, project management and construction of the physical infrastructure of our society. Our broad-based, vocational programme covers all the required bases of a civil engineer’s education, with an emphasis on applying your learning in context.

INTRODUCTION
You will be introduced to the essentials – everything from structural analysis and design, geomechanics and materials, to the digital built environment and its digitisation. You'll also study relevant subjects such as maths, computer-aided drawing, and analysis and design. Site visits are integral to the programme, as are various individual and group design exercises, which provide an opportunity for industrial feedback. Our teaching staff offer projects based on their research expertise. Students are encouraged to gain relevant work experience to enhance their employability by applying for a summer internship or a year placement with an approved company/organisation. Civil engineering graduates are in great demand and our programme aims to provide the educational base for graduates who demonstrate ingenuity whilst being practical, articulate, numerate, literate, imaginative, versatile, confident and inquisitive.

WHAT YOU’LL LEARN
- All bases underpinning the field of Civil Engineering
- Hands-on construction experience
- How to undertake research
Adapting to a busy hands-on industry environment
• Critical thinking
• Teamwork
• How to present and communicate clearly

ACCREDITATION

These programmes are accredited by the Joint Board of Moderators, which represents the five major civil engineering institutions and accredits civil engineering programmes on behalf of the Engineering Council, which sets and maintains the standards for the engineering profession in the UK. The MEng degree is accredited as fully satisfying the educational base for a Chartered Engineer (CEng).
Course content
Discover what you’ll learn, what you’ll study, and how you’ll be taught and assessed.

YEAR ONE

COMPULSORY MODULES

CIVIL AND ARCHITECTURAL ENGINEERING PROJECT (CIVE161)
Credits: 22.5 / Semester: whole session
This module provides students with an introduction to projects within the built environment, the roles of professional engineers, the professions they will interact with, and the skills required by a professional engineer operating in the built environment.

DIGITALISATION OF THE BUILT ENVIRONMENT (CIVE172)
Credits: 15 / Semester: semester 2
A significant proportion of the Built Environment exists and consequently Professional Engineers need to interact with existing Buildings or Infrastructure Assets. Aligned with understanding the role that Digital Technology plays in Designing and Constructing the Built Environment, this module introduces the technology and processes the industry uses to determine and monitor existing assets.

GEOMECHANICS 1 (CIVE120)
Credits: 7.5 / Semester: semester 2
The Geotechnical Engineer is responsible for the safe design of how a building or infrastructure asset interacts with the ground. This module introduces students to the role of the Geotechnical Engineer and the fundamental principles and concepts that form the basis of soil mechanics.

INTRODUCTION TO STATISTICS AND PROGRAMMING FOR ENGINEERS (ENGG185)
Credits: 7.5 / Semester: semester 1
This module introduces students to the basic concepts and principles of elementary statistics and programming. It explains the purposes and advantages of analysing data collected specifically to solve problems in engineering, reviews available software tools and programming languages used to formulate and answer basic engineering questions. It draws on examples from applications across the range of School of Engineering program areas.

INTRODUCTION TO THE DIGITAL BUILT ENVIRONMENT (CIVE170)
Credits: 15 / Semester: semester 1
The world is changing faster than at any time since the first industrial revolution. You will be introduced to the Built Environment as it exists now and how Digital processes and technology will affect the project lifecycle; feasibility, design, construction, operation and demolition/adaptation.

ENGINEERING MATHEMATICS (MATH198)

Credits: 22.5 / Semester: whole session

MATH198 is a Year 1 mathematics module for students of programmes taught in the School of Engineering, e.g. Aerospace, Civil, Mechanical or Industrial Design Engineering. It is designed to reinforce and build upon A-level mathematics, providing you with the strong background required in your engineering studies and preparing you for the Year 2 mathematics module MATH299 (Mathematics engineering II). In the first semester, the foundations are laid: differential calculus, vector algebra, integration and applications. Semester two covers complex numbers, differential equations, Laplace transformations and functions of two variables.

SOLIDS AND STRUCTURES 1 (ENGG110)

Credits: 15 / Semester: whole session

This module aims to introduce students to the fundamental concepts and theory of how engineering structures work to sustain loads. It will also show how stress analysis leads to the design of safer structures. It will also provide students with the means to analyse and design basic structural elements as used in modern engineering structures.

INTRODUCTION TO STRUCTURAL MATERIALS (ENGG108)

Credits: 7.5 / Semester: semester 1

This module introduces students to important mechanical properties of metallic alloys, polymers, ceramics, construction materials and composites used in engineering industry. It also introduces the mechanical testing techniques used to measure such properties, the common mechanisms of materials and component failure in use, and some appreciation of materials processing. The laboratory sessions are designed to familiarise students with engineering laboratory methods and procedures, as well as providing an experience of hands-on mechanical testing techniques.

Programme details and modules listed are illustrative only and subject to change.

YEAR TWO

In the second semester students may have the option to take a week-long residential course at the Constructionarium, for which there will be a subsidised charge.

COMPULSORY MODULES
ENGINEERING MATHEMATICS II (MATH299)
Credits: 7.5 / Semester: semester 1
To introduce some advanced Mathematics required by Engineers, Aerospace Engineers, Civil Engineers and Mechanical Engineers. To assist students in acquiring the skills necessary to use the mathematics developed in the module.

GEOMECHANICS 2 (CIVE220)
Credits: 15 / Semester: semester 1
This module introduces students to the theoretical framework of geotechnical engineering. It emphasizes soil as a material and provides an introduction to the application of the theory to practical geotechnical engineering problems including bearing capacity of foundations, earth pressures on retaining walls and slope stability.

GROUP DESIGN PROJECT (CIVE263)
Credits: 15 / Semester: semester 2
The students are provided with a realistic design brief that needs to be met over the course of the semester. This is achieved via a defined set of realistic work stages which enables the students to produce an open-ended structural design within a group working environment, thus promoting teamwork and industrial awareness. The final deliverable will be the submission of structured design portfolio/sketchbook and oral presentation to academic members of staff and relevant industry partners.

HYDRAULICS (CIVE210)
Credits: 15 / Semester: semester 2
Hydraulics belongs to applied fluid mechanics and covers hydrostatics and hydrodynamics of liquid such as water. The module focuses on pipe flows and open channel flows, which occur in a wide range of science and engineering problems. It is delivered via lectures, laboratory class and tutorials.

REINFORCED CONCRETE AND STEELWORK (CIVE241)
Credits: 15 / Semester: whole session
This module introduces students to the structural design concepts and applications of structural steelwork and reinforced concrete. The basic principles are covered and design examples for design to the relevant sections of the Eurocodes are given.

STRUCTURAL ENGINEERING IN THE BUILT ENVIRONMENT 2 (CIVE233)
Credits: 22.5 / Semester: whole session
This module builds on the first year with further exploration into topics introduced in “Structural Engineering in the Built Environment 1”. Students are introduced to advanced and emerging materials used in Civil and Architectural Engineering, deeper theoretic and applied understanding of structural behaviour and systems and continue to develop their knowledge and understanding of industry standard structural design tools. All within the context of ensuring structures are constructed to ensure buildings and infrastructure assets are safe, resilient, sustainable, economical and buildable.

ENVIRONMENTAL PLANNING AND INFRASTRUCTURE PROJECT (CIVE261)

Credits: 15 / Semester: semester 1

This module provides students with an introduction to the contexts of transport and infrastructure, and the skills required by a professional engineer operating in this sector.

EXPERIMENTAL METHODS (ENGG201)

Credits: 7.5 / Semester: semester 1

The module focuses on the essentials of data analysis and interpretation, engineering experimentation, measurement techniques and principles of instrumentation.

PROGRAMMING FOR CIVIL ENGINEERS (CIVE286)

Credits: 7.5 / Semester: semester 2

Students will be introduced to the basic concepts of computer programming and Excel to solve engineering problems. Gain knowledge of basic procedural programming concepts. Become proficient in the use of Excel and Excel Macros. Enhance problem solving skills. Gain experience in solving engineering problems using a software tool.

FLUID MECHANICS (ENGG113)

Credits: 7.5 / Semester: semester 1

This module introduces fluid mechanics to the First Year Undergraduate students, describes the fundamental principles of fluid property, dimension analysis, hydrostatics and hydrodynamics. Students will be able to solve simple engineering problems involves steady fluid flow.

FIELD THEORY, PARTIAL DIFFERENTIAL EQUATIONS & METHODS OF SOLUTION (MATH282)

Credits: 7.5 / Semester: semester 1
For XJTLU Students Only Maxwell’s equations elegantly describe the physical laws governing such things as electrodynamics. Related problems may be posed in terms of vector calculus, or in terms of differential equations. In this module, we revise vector calculus and field theory in three dimensions, using Stokes’ theorem and Gauss’ theorem to solve explicit physical problems; we evaluate path, surface and volume integrals, and derive general electrodynamic laws. We also consider both the ordinary and partial differential equations arising from real world problems related to Maxwell’s equations, and introduce some advanced methods for solving these (i.e. Fourier series, Fourier transforms, Laplace transforms), and further methods for approximating solutions (central difference methods in one and two dimensions).

Programme details and modules listed are illustrative only and subject to change.

YEAR THREE
The year three modules are currently being reviewed and will be updated shortly.

COMPULSORY MODULES

GEOTECHNICAL ENGINEERING (CIVE320)
Credits: 15 / Semester: semester 2
This module introduces students to the theory and methods that underpin geotechnical engineering practice. It covers the design of shallow and deep foundations, retaining walls, slopes and other structures according to Eurocode 7. In addition, it provides a comprehensive introduction to modern finite element methods and their application to geotechnical engineering.

INDIVIDUAL PROJECT (ENGG341)
Credits: 30 / Semester: whole session
The Year 3 individual research project; 300 hours student work over 2 semesters; 3 assessment stages (proposal 5%, interim 20%, final 75%).

SUSTAINABLE WATER ENGINEERING (CIVE316)
Credits: 15 / Semester: semester 2
In the face of growing populations, increasing demand from agriculture and industry, unsustainable use of water reserves and on going environmental change, water engineers face enormous challenges. This module will study the natural water systems, which underpin our use of water resource. Furthermore, it will apply fundamental hydraulic principles to predict flood risks, estimate water demand and supply, design and optimise water storage, transfer and supply infrastructure as well as set out the basic principles and practical measures to deal with these challenges.
YEAR FOUR

COMPULSORY MODULES

ADVANCED GEOMECHANICS (CIVE420)
Credits: 15 / Semester: semester 1
This module introduces students to advanced theories, concepts and methods of modern geomechanics. These include particle dynamics simulations, plasticity theory, limit analysis, constitutive modelling of soft and hard soils, and finite element analysis.

CAPSTONE: MULTIDISCIPLINARY PROJECT (CIVE462)
Credits: 30 / Semester: semester 2
This module presents an opportunity to practise comprehensive, multidisciplinary design in civil engineering. The students work in teams to provide complete solutions to demanding civil engineering design problems with some significant reliance on self, guided learning.

STRUCTURAL SYSTEMS (CIVE405)
Credits: 15 / Semester: semester 2
This module focuses on the conceptual design of civil engineering structures, and structural behaviour and assessment. It provides a review of the basics of structural engineering analysis and design including construction of bending moment and shear force diagrams, cross-sectional analysis, material properties and basic design code requirements.

MATERIALS FOR DURABLE AND SUSTAINABLE CONSTRUCTION (CIVE401)
Credits: 15 / Semester: semester 1

RISK AND UNCERTAINTY: PROBABILITY THEORY (ENGG404)
Credits: 7.5 / Semester: semester 1
This module develops understanding and appreciation of basic probability theory. It involves the quantification of uncertainties in the input and modelling, their implementation and the evaluation of the associated results in view of decision making. An introduction to numerical concepts will be provided. The methods shown in the module have a general applicability, which is demonstrated by examples and practical applications.

ADVANCED CONSTRUCTION MANAGEMENT (CIVE450)
Credits: 15 / Semester: whole session
Management linked to industry innovation and employee practice is an area of professionalism that is very important within the construction and wider built environment sector. It is also emerging as a distinctive and rewarding career path for many graduate civil engineers plus architectural engineers. On completion of this module, students will understand a range of approaches to project management implementation, diverse practices associated with modern methods of construction, as well as effective judgement-making of challenging tasks in complex real-life situations. It will both prepare graduates for professional development in civil engineering, as well as make them fully aware of multiple aspects of strategic, operational and lifecycle management as applied to this specific industrial sector.

UNCERTAINTY, RELIABILITY AND RISK 1 (ENGG304)

Credits: 7.5 / Semester: semester 1

This module covers broad aspects of uncertainty quantification methods, reliability analysis and risk assessment in engineering applications. It also provides understanding of statistical analysis of engineering data and computational methods for dealing with uncertainty in engineering problems.

Programme details and modules listed are illustrative only and subject to change.
Careers and employability

We are committed to developing the modern professional engineers for the future, ensuring that learning environments reflect future working environments. The skills gained through studying a degree in Civil Engineering equip our graduates with the knowledge necessary to excel in an ever-changing industry.

4 IN 5 OF OUR ENGINEERING STUDENTS FIND THEIR MAIN ACTIVITY AFTER GRADUATION MEANINGFUL.

Graduate Outcomes, 2018-19.

Many graduates have moved on to have careers with employers such as:

- Airbus
- BMI
- British Airways
- Highways Agency
- Jaguar Land Rover
- National Nuclear Laboratory
- Network Rail
- Pilkington
- Rolls Royce
- Siemens.

PREPARING YOU FOR FUTURE SUCCESS

At Liverpool, our goal is to support you to build your intellectual, social, and cultural capital so that you graduate as a socially-conscious global citizen who is prepared for future success. We achieve this by:

- Embedding employability within your curriculum, through the modules you take and the opportunities to gain real-world experience offered by many of our courses.
- Providing you with opportunities to gain experience and develop connections with people and organisations, including student and graduate employers as well as our global alumni.
- Providing you with the latest tools and skills to thrive in a competitive world, including access to Handshake, a platform which allows you to create your personalised job shortlist and apply with ease.
- Supporting you through our peer-to-peer led Careers Studio, where our career coaches provide you with tailored advice and support.
Fees and funding

Your tuition fees, how to pay, and other costs to consider.

TUITION FEES

Tuition fees cover the cost of your teaching, assessment, operating University facilities such as libraries, IT equipment, and access to academic and personal support.

<table>
<thead>
<tr>
<th>UK fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time place, per year</td>
</tr>
<tr>
<td>Year in industry fee</td>
</tr>
<tr>
<td>Year abroad fee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time place, per year</td>
</tr>
</tbody>
</table>

Fees stated are for the 2022-23 academic year and may rise for 2023-24.

ADDITIONAL COSTS

We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This includes a lab coat, safety boots, and a residential construction course.

Find out more about the [additional study costs](#) that may apply to this course.

SCHOLARSHIPS AND BURSARIES

We offer a range of scholarships and bursaries to help cover tuition fees and help with living expenses while at university.

[Scholarships and bursaries you can apply for from the United Kingdom](#)

Select your country or region for more scholarships and bursaries.
Entry requirements
The qualifications and exam results you’ll need to apply for this course.

<table>
<thead>
<tr>
<th>Your qualification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>About our typical entry requirements</td>
</tr>
</tbody>
</table>
| A levels | AAA including Mathematics
| | Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is AAB with A in the EPQ.
<p>| | You may automatically qualify for reduced entry requirements through our contextual offers scheme. |
| GCSE | 4/C in English and 4/C in Mathematics |
| Subject requirements | Mathematics |
| | For applicants from England: Where a science has been taken at A level (Chemistry, Biology or Physics), a pass in the Science practical of each subject will be required. |
| BTEC Level 3 Subsidiary Diploma | Acceptable at grade Distinction* alongside AA at A level including A Level Mathematics. |
| BTEC Level 3 Diploma | Distinction* Distinction* in relevant BTEC considered alongside A Level Mathematics grade A. Accepted BTECs include Aeronautical, Aerospace, Construction, Mechanical, Mechatronics and Engineering. |
| BTEC Level 3 National Extended Diploma | Not accepted without grade A in A Level Mathematics. |</p>
<table>
<thead>
<tr>
<th>Your qualification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Baccalaureate</td>
<td>36 overall, including 5 at Higher Level Mathematics</td>
</tr>
<tr>
<td>Irish Leaving Certificate</td>
<td>H1,H1,H2,H2,H2,H2, including H2 in Higher Maths. We also require a minimum of H6 in Higher English or O3 in Ordinary English</td>
</tr>
<tr>
<td>Scottish Higher/Advanced Higher</td>
<td>Pass Scottish Advanced Highers with grades AAA including Mathematics</td>
</tr>
<tr>
<td>Welsh Baccalaureate Advanced</td>
<td>Acceptable at grade A alongside AA in A Level Mathematics.</td>
</tr>
<tr>
<td>Cambridge Pre-U Diploma</td>
<td>D3 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade A M2 in Cambridge Pre U Principal Subject is accepted as equivalent to A-Level grade B Global Perspectives and Short Courses are not accepted.</td>
</tr>
<tr>
<td>Access</td>
<td>Not accepted.</td>
</tr>
<tr>
<td>Your qualification</td>
<td>Requirements</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>About our typical entry requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International qualifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select your country or region to view specific entry requirements.</td>
</tr>
<tr>
<td></td>
<td>Many countries have a different education system to that of the UK, meaning your qualifications may not meet our entry requirements. Completing your Foundation Certificate, such as that offered by the University of Liverpool International College, means you're guaranteed a place on your chosen course.</td>
</tr>
</tbody>
</table>

ALTERNATIVE ENTRY REQUIREMENTS

- If your qualification isn't listed here, or you're taking a combination of qualifications, [contact us](mailto:support@liverpool.ac.uk) for advice
- [Applications from mature students](https://liverpool.ac.uk/mature-students) are welcome.

THE ORIGINAL REDBRICK