Course details
- A level requirements: AAB
- UCAS code: F641
- Study mode: Full-time
- Length: 4 years
Return to top
This programme provides training in the principles and practice of geophysics and geology with an emphasis on pure and practical application.
You will cover core topics in geophysics, geology, physics and mathematics. Major features include training in practical geology and geophysics, exploration geophysics (particularly seismology), planetary-scale geophysics and geophysical inverse theory. Fieldwork currently involves field areas in Ireland, Wales, the Isle of Man, and Spain.
This four-year degree delivers advanced and rigorous training in both geophysics and geology, including a high proportion of fieldwork, and fundamental training in physics and mathematics. You don’t need to have studied geology before, and this degree therefore opens up a range of opportunities in geoscience. Graduates benefit from a wide range of possible careers, allowing flexible paths between geology and geophysics in a large company.
In year three, you will undertake an independent field mapping project and dissertation, either in the UK or abroad. In the final year you will work within one of our geophysical research groups to undertake a substantial research project, aiming to produce research of publishable quality thus providing an ideal entry into further research degrees if desired.
A number of the School’s degree programmes involve laboratory and field work. Fieldwork is carried out in various locations, ranging from inner city to coastal and mountainous environments. We consider applications from prospective disabled students on the same basis as all other students, and reasonable adjustments will be considered to address barriers to access.
This degree is accredited by the Geological Society of London, satisfying the requirements of Fellowship and Chartered Geologist status.
We’re proud to announce we’ve been awarded a Gold rating for educational excellence.
Discover what you'll learn, what you'll study, and how you'll be taught and assessed.
A strong feature of year one is the acquisition of fundamental skills in maths, geology and geoscience, supported by an integrated approach to transferable skills conveyed through the tutorial system.
Fieldwork involves:
This module introduces students to the key skills necessary to succeed on a University Earth Science course. It does this via a series of lectures, workshops and tutorials, together with a geology fieldwork day and attendance at departmental seminars and talks. The lectures, towards the start of the first semester, cover academic integrity, exam skills, employability and 2D/3D visualisation. Tailored workshops cover Geographical Information Systems (GIS), Word, Excel and programming skills. Small-group (typically 4 to 8 students) tutorials are run by academic staff and cover essay writing (including assessment), careers and employability. Academic tutors undertake personal development planning (careers and module selection advice) with each tutee.
This module provides a basic introduction to sedimentology and palaeontology. Students learn about the origin of sediment, sedimentary processes and structures and the ways in which sediments are converted into solid rock. The course outlines the importance of sedimentary rocks for hydrocarbons, water and as construction materials. Students learn how to describe and interpret sedimentary deposits.
The palaeontology component introduces students to the major fossil groups and to the ways in which organisms can be preserved as fossils. It covers the importance of fossils for the study of evolution, environmental change and earth history. Students learn how to describe fossils and how observations contribute to a broader understanding.
Students will be assessed by means of two practical tests and a theory examination.
This module aims to provide all students with a common foundation in mathematics, necessary for studying the physical sciences and maths courses in later semesters. All topics will begin "from the ground up" by revising ideas which may be familiar from A-level before building on these concepts. In particular, the basic principles of differentiation and integration will be practised, before extending to functions of more than one variable. Basic matrix manipulation will be covered as well as vector algebra and an understanding of eigenvectors and eigenvalues.
This field module provides a basic training in field techniques and gives students practical experience working with a wide range of rock types and tectonic structures to solve geological problems. Students gain experience in recording field data and use their own data to interpret geological processes and environments. The module is assessed by means of an individual fieldwork portfolio and a group synthesis poster completed after the field class.
This module provides an introduction to the Earth and aims to teach students about the structure and composition of the Earth, the Earth’s gravitational and magnetic fields, and dynamics within the deep Earth; the physics of Earth material and the geological time scale; and plate tectonics. The course is delivered through a combination of lectures and practicals. Students are assessed through a combination of coursework and a final exam.
This module introduces a key subject within Earth Sciences, Structural Geology and Geological Mapping. In this module you will be introduced to geological structures from the micro to the mountain scale, and receive training in the geometrical techniques used to document and analyse them. You will also learn the basic principles of stress and strain which underpin a number of advanced Earth Science subjects and skills used in industry and research. Finally, the module will provide training in how to read and understand geological maps, and train your 3D visualisation skills by learning how to create geological cross-sections from maps, and how to stereographically plot 3D geological data. A combination of virtual lectures, practical skill development sessions, discussion sessions, and directed reading will help you navigate this important Earth Sciences topic. You will be assessed on the development of your practical skills through an end-of-semester open book practical exam, and you will write an individual research paper on a specific topic in structural geology.
This module introduces some of the mathematical techniques used in physics. For example, differential equations, PDE’s, integral vector calculus and series are discussed. The ideas are first presented in lectures and then the put into practice in problems classes, with support from demonstrators and the module lecturer. When you have finished this module, you should: Be familiar with methods for solving first and second order differential equations in one variable. Be familiar with methods for solving partial differential equations and applications. Have a basic knowledge of integral vector calculus. Have a basic understanding of Fourier series and transforms.
This module will introduce and develop understanding of rock-forming minerals and critical raw materials in terms of their environments of formation, occurrence, and abundance. The module will focus on exploring the uses and societal significance of a range of Earth materials, especially those critical to sustainable and renewable energy resources and various societal infrastructure. The key practical skills of mineral description, identification and interpretation will be developed and applied throughout the module to equip students with appropriate skills for many later geoscience modules and for future employment.
In year two, students build on their skill set through further modules in geology, while building on fundamental physics and mathematics. A strong feature of year two is the introduction of geophysics modules in applied geophysics and seismology.
Fieldwork involves:
This module provides an introduction to the principles and application of all the main geophysical methods used for exploration purposes. These methods include seismic refraction, seismic reflection, electrical methods, ground penetrating radar, gravity and magnetics. Case studies will be used to highlight the application of these methods at a range of scales from shallow to deep to small to large, highlighting their uses within archaeology, engineering and geology. The module concludes with a synthesis of methods and how to approach site investigation. The module is delivered through lectures and problem sessions and is based on continuous assessment from set homework assignments or problem sheets and a final exam.
This module builds on the prerequisite module Introduction to Structural Geology and Geological Maps. While the module introduces additional structures, emphasis is placed on the spatial, kinematic and temporal relationships between geological structures. Strain and stress analysis are developed to a level such that they may be used, as appropriate, to explain the origins of selected geological structures. The module considers the geometries of a series of geological structures and stratigraphies displayed on geological maps and how they should be described and analysed with an emphasis on the interpretation of a geological map as an integrated whole. A combination of lectures, laboratory work and directed reading are used to deliver the module. Twenty lectures will be supported by ten laboratory based practicals. It will be assessed using a theory examination and a practical examination.
The module provides an overview of Newtonian mechanics, continuing on from A-level courses. This includes: Newton’s laws of motion in linear and rotational circumstances, gravitation and Kepler’s laws of planetary motion. The theory of Relativity is then introduced, starting from a historical context, through Einstein’s postulates, leading to the Lorentz transformations.
Building on previous study of mineralogy, igneous and structural geology, this module provides students with a foundation in the subject of metamorphism. From how and why atoms move around to form new minerals, through the textures of metamorphic rocks in hand specimen and how to interpret them, to the large-scale plate tectonic phenomena that drive everything. Delivery involves a combination of interactive lectures and practical sessions. Practicals involve thin section work, hand specimen examination, calculations and the study of geological maps. Metamorphic geology plays a pivotal role in unravelling the story of the Caledonides of Britain and Ireland, as it does in unravelling the history of the entire Earth. Students are assessed during term in using practical skills (thin section drawing, calculations, use of various graphical and pictorial techniques) and through a final theory exam in knowledge and understanding of the subject.
This module introduces students to fundamentals of Earth and environmental data science. Students will become familiar with methods used to collate and computationally analyse a variety of Earth Science data. After introducing programming basics, students will then start to write code to analyse and simulate Earth processes that model their datasets. By the end of the module, students are expected to have a broad overview of the ways in which data science is applied in the study of the Earth and environment.
This module is a residential field class in which students learn various techniques required to assess the 3D geological evolution of an area. Training entails mapping exercises at different scales, designed to develop abilities to visualise geology and geomorphology in 3D, and to analyse and synthesise discrete observations to build a full four-dimensional model that includes the deep-time geological history of the area. Mapping techniques also include notebook construction, to complement any geological or geomorphological map, generalised vertical sections and lithostratigraphy, and the construction of cross-sections for 3D visualisation. These are all skills that are highly regarded and often required by geoscience employers, and this field class also provides the students with several skills required for final year independent research projects. Supervision of all mapping and technical exercises is designed to encourage increasingly independent work as students’ skills develop. Group work develops the individual’s ability to work effectively in a team. Assessment takes place during the field class exercise.
Sedimentary successions are the only archive from which we can accurately decode the Earth’s past. Using physical, chemical and biological information we can reconstruct past climates, tectonics and depositional environments. This module teaches the fundamental principles of interpreting sedimentary stratigraphy and develops students’ abilities to recognise sedimentary textures and use them to interpret ancient depositional environments.
This module introduces and develops a range of skills that are central to the research process and for employment after graduation. The module provides students with the research skills they will need to complete Year 3 dissertation projects. The syllabus is delivered via tutorial sessions and a lecture/workshop series. The tutorials provide a learning environment to support students in discussing key issues and in developing important professional skills. The lecture/workshop series covers IT-related skills needed for writing and illustrating reports, consistently citing and referencing data sources, constructing final versions of geological maps, and plotting orientation data, as well as aspects of project planning and risk assessment. Assessment is coursework-based and comprises an oral presentation, a geological report/literature review, a computer-generated final map poster and a project plan (Gantt chart).
In year three, students focus on advanced geology and geophysics, with core modules in seismic analysis, field geology and applied geophysics. A range of geophysics modules are taken, including topics in global geophysics and geodynamics, and earthquake and volcano seismology. Students undertake a geological field project and dissertation (35 days fieldwork in the summer between years two and three, with dissertation write-up in semester one, year three).
Fieldwork includes:
This module builds on the theory taught in Exploration Geophysics (ENVS216), by introducing a large amount of practical experience, data analysis and interpretation. Fieldwork will be run using input from industry professionals from RSK. The module will introduce principles of remote sensing, and give practical experience in GIS, electrical methods, seismics, ground penetrating radar, gravity and magnetics. Attention will be paid to how these different methods can be integrated to give a thorough understanding of a study site. The module will be assessed through a combination of continuous assessment such as short reports.
Under the supervision of an academic member of staff, students will plan and undertake an independent (field or lab-based) research project in an area of their choosing. Students will use the subject specific and research skills that they have developed over the first 2 years of their degree, as well as developing data collection and analytical skills. Data collection is completed in the summer before Year 3 and write-up includes a talk, a dissertation and a poster.
This module provides introduction to the fundamentals of applied seismology and essential training for students interested in academic or government careers in seismology. The course mainly deals with the analysis and interpretation of seismic data using arrays and networks of seismometers to constrain complex geological processes in tectonic and volcanic settings, and to evaluate earthquake and volcanic hazards. The course is research-led and provides a learning experience that reflects the process of creating knowledge through activities that mirrors modern research practices. Content will be delivered through a combination of traditional class-based lectures, research seminars and computer-based sessions. The students will have an opportunity to work with real-world seismic data, and will learn and apply state-of-the-art techniques used in operational settings for seismic and volcano monitoring.
Geological fieldwork can be conveniently divided into three parts: reconnaissance, geological mapping, and more detailed geological analysis – all of which are necessary in building up a picture of the geological history of a given area. This field class, which takes place in June immediately after the end of the second year, deals with the third, detailed phase of geological fieldwork, and forms the final part of training for your independent field project and subsequent dissertation write-up. Using comfortable self-catering accommodation in Bundoran, County Donegal as a base, we examine sedimentary, igneous and metamorphic rocks in Donegal and Sligo. Bringing together knowledge and techniques from all the theory modules taken in Years One and Two, you will undertake projects that correspond to the main phases of the geological history of the north of Ireland: regional and contact metamorphism and deformation of Dalradian rocks; Carboniferous basin formation and fill; Palaeogene igneous intrusions. Students are assessed on the basis of their individual field notebooks, as well as for their contribution to two group projects. In addition to gaining a thorough understanding of the geology of this part of northwest Ireland, you will also develop invaluable skills in problem solving and independent working.
This module will provide an introduction the fundamentals of signal processing and seismic interpretation. The module is taught through a combination of Lectures, practical examples during computer-based practical sessions, and self-directed learning. Assessment for the module includes a conference style presentation on the analysis and interpretation of a real-world seismic dataset and a final exam. Successful students will develop understanding of the fundamental concepts and theory of signal processing. They will become familiar with modern seismic data analysis workflows, including correcting and enhancing data, leading to a final geologic interpretation.
This module will teach students to write and use simple numerical forward models of environmental systems, including geomorphic, geophysical, oceanographic and ecological models. Successful students will develop important transferrable coding and numeracy skills through a series of lectures, seminars and practical work. The module will be assessed through practical work only, with formative feedback throughout to help develop the necessary skills.
This module intends to give a holistic insight of a number of marine and terrestrial microfossils that are conventionally used for reconstructing past environmental conditions for the Quaternary period, including recent past. Microfossils are biological indicators that can help to either qualitatively and/or quantitatively estimate environmental conditions such as atmospheric temperature and precipitation (pollen), sea-surface conditions (foraminifera, diatoms, radiolarians, dinoflagellate cysts), salinity (ostracods, diatom), pH (diatoms), sea-ice cover (diatoms, dinoflagellate cysts), etc. These conditions are of paramount importance for modelling past climate conditions and the data derived from microfossil assemblages enable to better calibrate models, which in turn, are essential to forecast future climate. In addition, microfossil assemblages help to understand the natural evolution of our environment as well as measuring the amplitude of human activities over time.
This module provides the basic principles of engineering geology and hydrogeology. The applications of these principles are illustrated using selected examples and emphasis is placed on the interaction between them and their control on the mechanical stability of natural systems. By necessity predictions must be quantitative but, in order to develop understanding, a strongly graphical approach has been adopted in this module. The applications of engineering geology and hydrogeology will be highlighted using a field-based case study: the Mam Tor landslip. Engineering geology and hydrogeology are two important sources of employment and this module provides an opportunity to experience the scope and nature of these subjects. A combination of lectures, directed reading, laboratory work and fieldwork are used to deliver the module. Twelve lectures will be supported by six laboratory based practicals. It will be assessed using a report of the field investigation and an examination.
In year four, students focus on advanced geophysics, with core modules in seismic analysis, data modelling, and applied geophysics (Tenerife Fieldwork). Optional modules in a range of modules include topics in engineering geology, orogenic evolution (field class) and current issues in Earth science. Students also undertake a field, laboratory or computer-based geophysics research project for the duration of their final year.
Fieldwork:
Geophysics and Astrophysics talks are full of exciting colour figures showing the structure of the interior of the Earth or of other bodies. But are these pictures real? At best, they are only a simplified mathematical parameterisation of the true earth; at worst they can be misleading or plain wrong. This module provides the tools to construct such models by mathematical modelling of geophysical observations, but perhaps even more importantly, shows how such models can be interpreted, and provides understanding of their limitations. Mathematical foundations are given with sections on matrix analysis, optimisation theory and statistics, before going on to show how these are applied to observational problems. The concept of non-uniqueness is central – almost all geophysical modules require the estimation of an infinite (continuous) system from only finite data. Error estimation is considered in detail, in particular the reasons why most error estimates are close to worthless! Detailed examples are presented from all areas of geophysics, with a project to generate a model of the magnetic field of the planet Neptune. Examples also extend to modern developments, including links to Big Data and Machine Learning.
This module is a practical introduction to a range of techniques in exploration and environmental geophysics, and their application in industry and research. The students receive field-based (or online, where necessary) training in geophysical techniques, including seismic, gravity, magnetic, and electrical methods. During the entire duration of the field class the students will work in teams and will be required to undertake a geophysical survey. The students will benefit from being exposed to problem solving and a workflow analogous to working for a major exploration or geophysical engineering company.
A pinnacle of your degree, this module will embed you within an active research group where you will undertake an individual and unique geophysical research project over the course of an academic year. The results of your analyses may well constitute an original scientific finding forming part of a future peer-reviewed paper appearing in an international publication. In addition to developing specific and general research skills, you will gain invaluable experience in communicating your topic and findings in both an oral and written format.
This module returns to the broad subject areas of Earth structure and plate tectonics, building a stronger quantitative and research skills focus together with an extended requirement to synthesise broad topics into coherent arguments concerning global and topical geodynamical problems. It will cover advanced topics in plate tectonics, global mantle and core geodynamics, Earth and planetary history and lithospheric-scale processes. A strong emphasis is placed on physical interactions between the primary layers of Earth leading to an integrational understanding of Earth’s dynamics and evolution.
This module covers geoscience topics that have current societal importance. It will promote independent thinking, critical insight and a sound understanding of a variety of current geoscience topics that affect local, national and international governance. The module will allow development of independent research skills and encourage effective communication with a variety of different stakeholders (governing bodies, public, companies).
The module is delivered as a series of lectures, seminars and workshops. Lectures will introduce some high-level current issues in earth science, followed by progressively more student-led seminars and workshops, where they present their work and debate issues with other students in the class. Feedback from these seminars/debates informs them on how to write their consultancy reports, and deliver the group presentation.
This module provides the principles of engineering geology and hydrogeology. The applications of these principles are illustrated using selected examples and emphasis is placed on the interaction between them and their control on the mechanical stability of natural systems. By necessity predictions must be quantitative but, in order to develop understanding, a strongly graphical approach has been adopted in this module. The evaluation of errors in natural datasets an their impacts on quantitative predictions will be considered. The applications of engineering geology and hydrogeology will be highlighted using a field-based case study: the Mam Tor landslip. Engineering geology and hydrogeology are two important sources of employment and this module provides an opportunity to experience the scope and nature of these subjects. A combination of lectures, directed reading, laboratory work and fieldwork are used to deliver the module. Twelve lectures will be supported by six laboratory based practicals. It will be assessed using an individual report of the field investigation and an examination.
This module looks at long-term evolutionary patterns and the links between the evolution of life, climate and environmental change. Building on the basics of palaeontology, this module covers topics and ideas that are used day-to-day by professional palaeontologists. The course deals with evolutionary theory and its place in palaeontology, as the student learns how to read and construct evolutionary hypotheses, and describe and understand patterns in the fossil record. In addition, the module will explore key events in the history of life on Earth, using exceptionally preserved faunas to illustrate the evolution of the flora and fauna. The module is delivered through lectures, practical sessions and seminars. The practicals are a key component of the module and are designed to run alongside and support the lecture material, giving the student the opportunity to understand the module content more deeply. Students are required to undertake a group project that brings together much of the course material into a coherent whole.
Our pathway to a carbon neutral world relies upon our ability to develop new technologies and improve established technologies. Earth scientists will play a major role in this Energy revolution from sourcing raw materials for solar cells and batteries to sequestering carbon dioxide in rock units deep beneath the Earth’s surface. This module provides a background to the GeoEnergy sector, with particular focus on fluid flow through geological structures and rock units. The broad aim of the module is to provide students with the appropriate level of knowledge and skillset to be able to evaluate and manage hydrocarbon reservoirs, including carbon dioxide sequestration, and geothermal systems.
This module will teach students to write and use simple numerical forward models of environmental systems, including geomorphic, geophysical, oceanographic and ecological models. Successful students will develop important transferrable coding and numeracy skills through a series of lectures, seminars and practical work. The module will be assessed through practical work only, with formative feedback throughout to help develop the necessary skills.
You will typically receive 15-20 hours of formal teaching each week, and complete between 50 and 100 days of residential fieldwork over the course of their programme. In year three and four you will carry out independent research projects on a topic and location of your choice. All projects are supervised by a member of staff who will meet with you on a weekly, or more frequent, basis.
A number of the School’s degree programmes involve laboratory and field work. The field work is carried out in various locations, ranging from inner city to coastal and mountainous environments. We consider applications from prospective students with disabilities on the same basis as all other students, and reasonable adjustments will be considered to address barriers to access.
Teaching takes place through lectures, practicals, workshops, seminars, tutorials and fieldwork, with an emphasis on learning through doing.
Assessment matches the learning objectives for each module and may take the form of written exams, practical laboratory and computer examinations, coursework submissions in the form of essays, scientific papers, briefing notes or lab/field notebooks, reports and portfolios, oral and poster presentations and contributions to group projects, and problem-solving exercises. Assessment is via tasks that mirror those graduate students are likely to undertake working as professional geoscientists. For example, generating and interpreting quantitative spatial data, with appropriate consideration of inherent uncertainty, is a key task and necessary skill for professional environmental geoscientists, and this skill is developed and assessed on several programme modules, especially field and lab-based modules. As well as being authentic in terms of the underlying purpose of the assessed task, assessment tasks are also authentic in terms of format, intended audience, resources used, and collaborative team elements. For example, team-based environmental assessment work with professional format delivery appropriate for presentation to management-level colleagues using state-of-the-art field, lab or IT resources is central to assessments in field classes.
We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.
Studying with us means you can tailor your degree to suit you. Here's what is available on this course.
Teaching takes place through lectures, practicals, workshops, seminars, tutorials and fieldwork, with an emphasis on learning through doing.
From arrival to alumni, we’re with you all the way:
Easily the best thing about my course is the field work, I’ve been to Scotland, Wales, Ireland, the Alps. In January, I go to Tenerife – when we get to use all the geophysical equipment you’d use in a job.
Want to find out more about student life?
Chat with our student ambassadors and ask any questions you have.
There has never been a better time to study Earth sciences. Many of the fundamental questions of our times will be answered by geoscientists, as we seek to provide sustainable resources for the world’s population, as well as predict and mitigate climate change and natural hazards by building a better understanding of the planet on which we live.
Our recent graduates have gained employment within a degree-related field or continued within further education after graduation. We have close links with geoscience and environmental industries ensuring that our degrees properly equip you for future employment.
Your tuition fees, funding your studies, and other costs to consider.
UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland) | |
---|---|
Full-time place, per year | £9,250 |
Year in industry fee | £1,850 |
Year abroad fee | £1,385 |
International fees | |
---|---|
Full-time place, per year | £27,200 |
Year abroad fee | £13,600 |
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support. Learn more about paying for your studies..
We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This includes the cost of a geological field kit, dissertation expenses, and optional field classes in year three.
Find out more about the additional study costs that may apply to this course.
We offer a range of scholarships and bursaries to provide tuition fee discounts and help with living expenses while at university.
Check out our Liverpool Bursary, worth up to £2,000 per year for eligible UK students. Or for international students, our Undergraduate Global Advancement Scholarship offers a tuition fee discount of up to £5,000 for eligible international students starting an undergraduate degree from September 2024.
Discover our full range of undergraduate scholarships and bursaries
The qualifications and exam results you'll need to apply for this course.
My qualifications are from: United Kingdom.
Your qualification | Requirements |
---|---|
A levels |
AAB including Mathematics and Physics. Applicants with the Extended Project Qualification (EPQ) are eligible for a reduction in grade requirements. For this course, the offer is ABB with A in the EPQ. You may automatically qualify for reduced entry requirements through our contextual offers scheme. |
T levels |
T levels are not currently accepted. |
GCSE | 4/C in English and 4/C in Mathematics |
Subject requirements |
Mathematics and Physics A level. For applicants from England: For science A levels that include the separately graded practical endorsement, a "Pass" is required. |
BTEC Level 3 National Extended Diploma |
Not accepted. Applicants should apply for F640. |
International Baccalaureate |
35 points with no score less than 4, inc. Higher Level in Mathematics and Physics. |
Irish Leaving Certificate | H1, H1, H2, H2, H2, H3 including H2 or above in Mathematics and Physics |
Scottish Higher/Advanced Higher |
Not accepted without Advanced Highers at AAB including Mathematics and Physics |
Welsh Baccalaureate Advanced | Accepted at Grade B with AA at A Level in Mathematics and Physics |
Access | Not accepted. Applicants should apply for F640. |
International qualifications |
Many countries have a different education system to that of the UK, meaning your qualifications may not meet our direct entry requirements. Although there is no direct Foundation Certificate route to this course, completing a Foundation Certificate, such as that offered by the University of Liverpool International College, can guarantee you a place on a number of similar courses which may interest you. |
Have a question about this course or studying with us? Our dedicated enquiries team can help.
Last updated 10 October 2023 / / Programme terms and conditions