Photo of Dr Vitaliy Kurlin

Dr Vitaliy Kurlin PhD

Senior Lecturer (Associate Professor) Computer Science

Publications

Selected Publications

  1. A higher-dimensional homologically persistent skeleton (Report - 2019)
  2. A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space (Journal article - 2015)
  3. All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron (Journal article - 2008)
  4. Compressed Drinfeld associators (Journal article - 2005)
  5. A 1-parameter approach to links in a solid torus (Journal article - 2010)

2019

Resolution-independent meshes of super pixels (Conference Paper)

Kurlin, V., & Smith, P. (n.d.). Resolution-independent meshes of super pixels. Retrieved from http://arxiv.org/abs/1910.13323v1

Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets (Journal article)

Muszynski, G., Kashinath, K., Kurlin, V., Wehner, M., & Prabhat. (2019). Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets. GEOSCIENTIFIC MODEL DEVELOPMENT, 12(2), 613-628. doi:10.5194/gmd-12-613-2019

DOI: 10.5194/gmd-12-613-2019

Topological Data Analysis and Machine Learning for Recognizing Atmospheric River Patterns in Large Climate Datasets (Journal article)

Muszynski, G., Kashinath, K., Kurlin, V., & Wehner, M. (n.d.). Topological Data Analysis and Machine Learning for Recognizing Atmospheric River Patterns in Large Climate Datasets. Geoscientific Model Development Discussions, 1-24. doi:10.5194/gmd-2018-53

DOI: 10.5194/gmd-2018-53

Skeletonisation Algorithms with Theoretical Guarantees for Unorganised Point Clouds with High Levels of Noise (Report)

Kurlin, V., & Smith, P. (n.d.). Skeletonisation Algorithms with Theoretical Guarantees for Unorganised Point Clouds with High Levels of Noise. Retrieved from http://arxiv.org/abs/1901.03319v2

Development of a Reconstruction Method for Major Vortex Structure around Tandem Flapping Wing Object via Vortex Trajectory Method (Conference Paper)

Ban, N., Yamazaki, W., & Kurlin, V. (2019). Development of a Reconstruction Method for Major Vortex Structure around Tandem Flapping Wing Object via Vortex Trajectory Method. In AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2019-2224

DOI: 10.2514/6.2019-2224

A higher-dimensional homologically persistent skeleton (Report)

Kalisnik, S., Kurlin, V., & Lesnik, D. (2019). A higher-dimensional homologically persistent skeleton. doi:10.1016/j.aam.2018.07.004

DOI: 10.1016/j.aam.2018.07.004

2018

A Persistence-Based Approach to Automatic Detection of Line Segments in Images (Conference Paper)

Kurlin, V., & Muszynski, G. (2019). A Persistence-Based Approach to Automatic Detection of Line Segments in Images. In Unknown Conference (pp. 137-150). Springer International Publishing. doi:10.1007/978-3-030-10828-1_11

DOI: 10.1007/978-3-030-10828-1_11

A Higher-Dimensional Homologically Persistent Skeleton (Journal article)

Kalisnik, S., Kurlin, V., & Lesnik, D. (n.d.). A Higher-Dimensional Homologically Persistent Skeleton. Advances in Applied Mathematics, 102, 113-142. doi:10.1016/j.aam.2018.07.004

DOI: 10.1016/j.aam.2018.07.004

Convex constrained meshes for superpixel segmentations of images. (Journal article)

Forsythe, J., & Kurlin, V. (2017). Convex constrained meshes for superpixel segmentations of images. JOURNAL OF ELECTRONIC IMAGING, 26(6). doi:10.1117/1.JEI.26.6.061609

DOI: 10.1117/1.JEI.26.6.061609

Towards a topological pattern detection in fluid and climate simulation data (Conference Paper)

Muszynski, G., Kashinath, K., Kurlin, V., Wehner, M., & Prabhat. (2018, September 19). Towards a topological pattern detection in fluid and climate simulation data. In Climate Informatics (pp. 4 pages). Boulder, Colorado, US. Retrieved from https://www2.cisl.ucar.edu/

Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design (Journal article)

Shields, C. A., Rutz, J. J., Leung, L. -Y., Ralph, F. M., Wehner, M., Kawzenuk, B., . . . Nguyen, P. (2018). Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. GEOSCIENTIFIC MODEL DEVELOPMENT, 11(6), 2455-2474. doi:10.5194/gmd-11-2455-2018

DOI: 10.5194/gmd-11-2455-2018

Superpixels optimized by color and shape (Conference Paper)

Kurlin, V., & Harvey, D. (2018). Superpixels optimized by color and shape. In Lecture Notes in Computer Science (pp. 14 pages). Venice, Italy: Springer Nature. Retrieved from http://kurlin.org/

2017

Computing invariants of knotted graphs given by sequences of points in 3-dimensional space (Chapter)

Kurlin, V. (2017). Computing Invariants of Knotted Graphs Given by Sequences of Points in 3-Dimensional Space. In Mathematics and Visualization (pp. 349-363). Springer International Publishing. doi:10.1007/978-3-319-44684-4_21

DOI: 10.1007/978-3-319-44684-4_21

2016

Resolution-independent superpixels based on convex constrained meshes without small angles (Conference Paper)

Kurlin, V., Forsythe, J., & Fitzgibbon, A. (2016). Resolution-independent superpixels based on convex constrained meshes without small angles. In Lecture Notes in Computer Science. Las-Vegas, USA: Springer Verlag (Germany): Series. doi:10.1007/978-3-319-50835-1_21

DOI: 10.1007/978-3-319-50835-1_21

A fast persistence-based segmentation of noisy 2D clouds with provable guarantees (Journal article)

Kurlin, V. (2016). A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. PATTERN RECOGNITION LETTERS, 83, 3-12. doi:10.1016/j.patrec.2015.11.025

DOI: 10.1016/j.patrec.2015.11.025

A Linear Time Algorithm for Embedding Arbitrary Knotted Graphs into a 3-Page Book (Chapter)

Kurlin, V., & Smithers, C. (2016). A Linear Time Algorithm for Embedding Arbitrary Knotted Graphs into a 3-Page Book. In Unknown Book (Vol. 598, pp. 99-122). doi:10.1007/978-3-319-29971-6_6

DOI: 10.1007/978-3-319-29971-6_6

2015

A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images (Conference Paper)

Kurlin, V. (2015). A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images. In COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT I Vol. 9256 (pp. 606-617). doi:10.1007/978-3-319-23192-1_51

DOI: 10.1007/978-3-319-23192-1_51

Relaxed Disk Packing. (Conference Paper)

Ham, M. I., Edelsbrunner, H., & Kurlin, V. (2015). Relaxed Disk Packing.. In CCCG. Queen's University, Ontario, Canada. Retrieved from http://research.cs.queensu.ca/cccg2015/CCCG15-papers/CCCG%2715_Proc.html

A linear time algorithm for visualizing knotted structures in 3 pages (Conference Paper)

Kurlin, V. (2015). A linear time algorithm for visualizing knotted structures in 3 pages. In IVAPP 2015 - 6th International Conference on Information Visualization Theory and Applications; VISIGRAPP, Proceedings (pp. 5-16).

A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space (Journal article)

Kurlin, V. (2015). A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space. COMPUTER GRAPHICS FORUM, 34(5), 253-262. doi:10.1111/cgf.12713

DOI: 10.1111/cgf.12713

Relaxed Disk Packing (Journal article)

Edelsbrunner, H., Iglesias-Ham, M., & Kurlin, V. (n.d.). Relaxed Disk Packing. Retrieved from http://arxiv.org/abs/1505.03402v1

2014

Computing a configuration skeleton for motion planning of two round robots on a metric graph (Conference Paper)

Kurlin, V., Safi-Samghabadi, M., & IEEE. (2014). Computing a configuration skeleton for motion planning of two round robots on a metric graph. In 2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM) (pp. 723-729). Retrieved from http://gateway.webofknowledge.com/

Auto-completion of Contours in Sketches, Maps and Sparse 2D Images Based on Topological Persistence (Conference Paper)

Kurlin, V. (2014). Auto-completion of Contours in Sketches, Maps and Sparse 2D Images Based on Topological Persistence. In 16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014) (pp. 594-601). doi:10.1109/SYNASC.2014.85

DOI: 10.1109/SYNASC.2014.85

A fast and robust algorithm to count topologically persistent holes in noisy clouds (Conference Paper)

Kurlin, V., & IEEE. (2014). A fast and robust algorithm to count topologically persistent holes in noisy clouds. In 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) (pp. 1458-1463). doi:10.1109/CVPR.2014.189

DOI: 10.1109/CVPR.2014.189

2013

How many wireless sensors are needed to guarantee connectivity of a 1-dimensional network with random inter-node spacings? (Journal article)

Kurlin, V., & Mihaylova, L. (n.d.). Connectivity of Random 1-Dimensional Networks. Retrieved from http://arxiv.org/abs/0710.1001v2

2012

Computing braid groups of graphs with applications to robot motion planning (Journal article)

Kurlin, V. (2012). COMPUTING BRAID GROUPS OF GRAPHS WITH APPLICATIONS TO ROBOT MOTION PLANNING. HOMOLOGY HOMOTOPY AND APPLICATIONS, 14(1), 159-180. doi:10.4310/HHA.2012.v14.n1.a8

2010

Recognizing trace graphs of closed braids (Journal article)

Fiedler, T., & Kurlin, V. (n.d.). Recognizing trace graphs of closed braids. Retrieved from http://arxiv.org/abs/0808.2713v1

A 1-parameter approach to links in a solid torus (Journal article)

Fiedler, T., & Kurlin, V. (2010). A 1-parameter approach to links in a solid torus. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 62(1), 167-211. doi:10.2969/jmsj/06210167

DOI: 10.2969/jmsj/06210167

2008

Fiber quadrisecants in knot isotopies (Journal article)

Fiedler, T., & Kurlin, V. (2008). FIBER QUADRISECANTS IN KNOT ISOTOPIES. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 17(11), 1415-1428. doi:10.1142/S0218216508006695

Gauss paragraphs of classical links and a characterization of virtual link groups (Journal article)

Kurlin, V. (2008). Gauss paragraphs of classical links and a characterization of virtual link groups. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 145, 129-140. doi:10.1017/S0305004108001151

All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron (Journal article)

Kearton, C., & Kurlin, V. (2008). All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 8(3), 1223-1247. doi:10.2140/agt.2008.8.1223

DOI: 10.2140/agt.2008.8.1223

2007

The Baker-Campbell-Hausdorff formula in the free metabelian Lie algebra (Journal article)

Kurlin, V. (n.d.). The Baker-Campbell-Hausdorff formula in the free metabelian Lie algebra. Retrieved from http://arxiv.org/abs/math/0606330v4

Peripherally specified homomorphs of link groups (Journal article)

Kurlin, V., & Lines, D. (2007). Peripherally specified homomorphs of link groups. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 16(6), 719-740. doi:10.1142/S0218216507005440

DOI: 10.1142/S0218216507005440

2006

Three-page encoding and complexity theory for spatial graphs (Journal article)

Kurlin, V. (2007). Three-page encoding and complexity theory for spatial graphs. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 16(1), 59-102. doi:10.1142/S021821650700521X

DOI: 10.1142/S021821650700521X

2005

Compressed Drinfeld associators (Journal article)

Kurlin, V. (2005). Compressed Drinfeld associators. JOURNAL OF ALGEBRA, 292(1), 184-242. doi:10.1016/j.jalgebra.2005.05.013

DOI: 10.1016/j.jalgebra.2005.05.013

2004

Three-page embeddings of singular knots (Journal article)

Kurlin, V. A., & Vershinin, V. V. (2004). Three-page embeddings of singular knots. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 38(1), 14-27. doi:10.1023/B:FAIA.0000024864.64045.de

DOI: 10.1023/B:FAIA.0000024864.64045.de

2003

Basic embeddings of graphs and Dynnikov's three-page embedding method (Journal article)

Kurlin, V. A. (2003). Basic embeddings of graphs and Dynnikov's three-page embedding method. RUSSIAN MATHEMATICAL SURVEYS, 58(2), 372-374. doi:10.1070/RM2003v058n02ABEH000617

DOI: 10.1070/RM2003v058n02ABEH000617

Базисные вложения графов и метод трехстраничных вложений Дынникова (Journal article)

Курлин, В. А., & Kurlin, V. A. (2003). Базисные вложения графов и метод трехстраничных вложений Дынникова. Успехи математических наук, 58(2), 163-164. doi:10.4213/rm617

DOI: 10.4213/rm617

2001

Three-page Dynnikov's Diagrams of Spatial 3-valent Graphs (Journal article)

Kurlin, V. (2001). Three-page Dynnikov's Diagrams of Spatial 3-valent Graphs. Functional Analysis and Its Applications, 35(3), 230-233.

Трехстраничные диаграммы Дынникова заузленных $3$-валентных графов (Journal article)

Курлин, В. А., & Kurlin, V. A. (2001). Трехстраничные диаграммы Дынникова заузленных $3$-валентных графов. Функциональный анализ и его приложения, 35(3), 84-88. doi:10.4213/faa264

DOI: 10.4213/faa264

2000

Basic embeddings into a product of graphs (Journal article)

Kurlin, V. (2000). Basic embeddings into a product of graphs. TOPOLOGY AND ITS APPLICATIONS, 102(2), 113-137. doi:10.1016/S0166-8641(98)00147-3

DOI: 10.1016/S0166-8641(98)00147-3

1999

Invariants of colour links (Journal article)

Kurlin, V. (1999). Invariants of colour links. Moscow University Mathematics Bulletin.

The reduction of framed links to ordinary ones (Journal article)

Kurlin, V. (1999). The reduction of framed links to ordinary ones. RUSSIAN MATHEMATICAL SURVEYS, 54(4), 845-846. doi:10.1070/RM1999v054n04ABEH000190

DOI: 10.1070/RM1999v054n04ABEH000190

Редукция оснащенных зацеплений к обычным (Journal article)

Курлин, В. А., & Kurlin, V. A. (1999). Редукция оснащенных зацеплений к обычным. Успехи математических наук, 54(4), 177-178. doi:10.4213/rm190

DOI: 10.4213/rm190