Photo of Dr Vitaliy Kurlin

Dr Vitaliy Kurlin PhD

Senior Lecturer (Associate Professor) Computer Science

Publications

Selected Publications

  1. A Higher-Dimensional Homologically Persistent Skeleton (Journal article - 2019)
  2. A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space (Journal article - 2015)
  3. All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron (Journal article - 2008)
  4. Compressed Drinfeld associators (Journal article - 2005)
  5. A 1-parameter approach to links in a solid torus (Journal article - 2010)

2021

A complete and continuous map of the Lattice Isometry Space for all 3-dimensional lattices (Journal article)

Bright, M., Cooper, A. I., & Kurlin, V. (n.d.). A complete and continuous map of the Lattice Isometry Space for all 3-dimensional lattices. Retrieved from http://arxiv.org/abs/2109.11538v1

Easily computable continuous metrics on the space of isometry classes of all 2-dimensional lattices (Journal article)

Bright, M., Cooper, A. I., & Kurlin, V. (n.d.). Easily computable continuous metrics on the space of isometry classes of all 2-dimensional lattices. Retrieved from http://arxiv.org/abs/2109.10885v1

Isometry Invariant Shape Recognition of Projectively Perturbed Point Clouds by the Mergegram Extending 0D Persistence (Journal article)

Elkin, Y., & Kurlin, V. (2021). Isometry Invariant Shape Recognition of Projectively Perturbed Point Clouds by the Mergegram Extending 0D Persistence. MATHEMATICS, 9(17). doi:10.3390/math9172121

DOI: 10.3390/math9172121

Pointwise distance distributions of periodic sets (Journal article)

Widdowson, D., & Kurlin, V. (n.d.). Pointwise distance distributions of periodic sets. Retrieved from http://arxiv.org/abs/2108.04798v1

Skeletonisation algorithms with theoretical guarantees for unorganised point clouds with high levels of noise (Report)

Smith, P., & Kurlin, V. (2021). Skeletonisation algorithms with theoretical guarantees for unorganised point clouds with high levels of noise (ARTN 107902). doi:10.1016/j.patcog.2021.107902

DOI: 10.1016/j.patcog.2021.107902

The Density Fingerprint of a Periodic Point Set (Conference Paper)

Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., & Wintraecken, M. (n.d.). The Density Fingerprint of a Periodic Point Set. In SoCG 2021, 32:1-16. doi:10.4230/LIPIcs.SoCG.2021.32

DOI: 10.4230/LIPIcs.SoCG.2021.32

Atmospheric Blocking Pattern Recognition in Global Climate Model Simulation Data (Conference Paper)

Muszynski, G., Prabhat., Balewski, J., Kashinath, K., Wehner, M., Kurlin, V., & SOC, I. C. (2021). Atmospheric Blocking Pattern Recognition in Global Climate Model Simulation Data. In 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) (pp. 677-684). doi:10.1109/ICPR48806.2021.9412736

DOI: 10.1109/ICPR48806.2021.9412736

One class classification as a practical approach for accelerating p–p co-crystal discovery (Journal article)

Vriza, A., Canaj, A. B., Vismara, R., Kershaw Cook, L. J., Manning, T. D., Gaultois, M. W., . . . Rosseinsky, M. J. (n.d.). One class classification as a practical approach for accelerating p–p co-crystal discovery. Chemical Science. doi:10.1039/d0sc04263c

DOI: 10.1039/d0sc04263c

An Isometry Classification of Periodic Point Sets (Conference Paper)

Anosova, O., & Kurlin, V. (2021). An Isometry Classification of Periodic Point Sets. In Unknown Conference (pp. 229-241). Springer International Publishing. doi:10.1007/978-3-030-76657-3_16

DOI: 10.1007/978-3-030-76657-3_16

Introduction to Periodic Geometry and Topology (Journal article)

Anosova, O., & Kurlin, V. (n.d.). Introduction to Periodic Geometry and Topology. Retrieved from http://arxiv.org/abs/2103.02749v2

The Density Fingerprint of a Periodic Point Set. (Conference Paper)

Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., & Wintraecken, M. (2021). The Density Fingerprint of a Periodic Point Set.. In K. Buchin, & É. C. D. Verdière (Eds.), SoCG Vol. 189 (pp. 32:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-184-9

2020

The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions (Journal article)

Hargreaves, C. J., Dyer, M. S., Gaultois, M. W., Kurlin, V. A., & Rosseinsky, M. J. (2020). The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions. Chemistry of Materials, 32(24), 10610-10620. doi:10.1021/acs.chemmater.0c03381

DOI: 10.1021/acs.chemmater.0c03381

The asymptotic behaviour and a near linear time algorithm for isometry invariants of periodic sets (Journal article)

Widdowson, D., Mosca, M., Pulido, A., Kurlin, V., & Cooper, A. I. (n.d.). The asymptotic behaviour and a near linear time algorithm for isometry invariants of periodic sets. Retrieved from http://arxiv.org/abs/2009.02488v4

The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions (Journal article)

Hargreaves, C., Dyer, M., Gaultois, M., Kurlin, V., & Rosseinsky, M. J. (n.d.). The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions. doi:10.26434/chemrxiv.12777566.v1

DOI: 10.26434/chemrxiv.12777566.v1

Encoding and topological computation on textile structures (Journal article)

Bright, M., & Kurlin, V. (2020). Encoding and topological computation on textile structures. Computers & Graphics, 90, 51-61. doi:10.1016/j.cag.2020.05.014

DOI: 10.1016/j.cag.2020.05.014

Synthesis through Unification Genetic Programming (Conference Paper)

Welsch, T., Kurlin, V., & Machinery, A. C. (2020). Synthesis through Unification Genetic Programming. In GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (pp. 1029-1036). doi:10.1145/3377930.3390208

DOI: 10.1145/3377930.3390208

Voronoi-Based Similarity Distances between Arbitrary Crystal Lattices (Journal article)

Mosca, M. M., & Kurlin, V. (2020). Voronoi-Based Similarity Distances between Arbitrary Crystal Lattices. CRYSTAL RESEARCH AND TECHNOLOGY, 55(5). doi:10.1002/crat.201900197

DOI: 10.1002/crat.201900197

Persistence-based resolution-independent meshes of superpixels (Journal article)

Kurlin, V., & Muszynski, G. (2020). Persistence-based resolution-independent meshes of superpixels. PATTERN RECOGNITION LETTERS, 131, 300-306. doi:10.1016/j.patrec.2020.01.014

DOI: 10.1016/j.patrec.2020.01.014

Polygonal Meshes of Highly Noisy Images based on a New Symmetric Thinning Algorithm with Theoretical Guarantees (Conference Paper)

Siddiqui, M. A., & Kurlin, V. (2020). Polygonal Meshes of Highly Noisy Images based on a New Symmetric Thinning Algorithm with Theoretical Guarantees. In VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP (pp. 137-146). doi:10.5220/0009340301370146

DOI: 10.5220/0009340301370146

The Mergegram of a Dendrogram and Its Stability. (Conference Paper)

Elkin, Y., & Kurlin, V. (2020). The Mergegram of a Dendrogram and Its Stability.. In J. Esparza, & D. Král' (Eds.), MFCS Vol. 170 (pp. 32:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from http://www.informatik.uni-trier.de/~ley/db/conf/mfcs/mfcs2020.html

2019

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology (Journal article)

Rutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P., . . . Viale, M. (n.d.). The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology. Journal of Geophysical Research: Atmospheres. doi:10.1029/2019jd030936

DOI: 10.1029/2019jd030936

HOW TO CORRECTLY SAMPLE UNIT CELLS IN COMPUTER SIMULATIONS OF CRYSTAL STRUCTURES (Conference Paper)

Kurlin, V. (2019). HOW TO CORRECTLY SAMPLE UNIT CELLS IN COMPUTER SIMULATIONS OF CRYSTAL STRUCTURES. In ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES Vol. 75 (pp. E547). doi:10.1107/S2053273319090090

DOI: 10.1107/S2053273319090090

MATHEMATICAL JUSTIFICATIONS FOR CRYSTAL SYSTEMS, BRAVAIS LATTICES AND A NEW CONTINUOUS CLASSIFICATION (Conference Paper)

Kurlin, V. (2019). MATHEMATICAL JUSTIFICATIONS FOR CRYSTAL SYSTEMS, BRAVAIS LATTICES AND A NEW CONTINUOUS CLASSIFICATION. In ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES Vol. 75 (pp. E768). doi:10.1107/S2053273319087886

DOI: 10.1107/S2053273319087886

Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets (Journal article)

Muszynski, G., Kashinath, K., Kurlin, V., Wehner, M., & Prabhat. (2019). Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets. GEOSCIENTIFIC MODEL DEVELOPMENT, 12(2), 613-628. doi:10.5194/gmd-12-613-2019

DOI: 10.5194/gmd-12-613-2019

Topological Data Analysis and Machine Learning for Recognizing Atmospheric River Patterns in Large Climate Datasets (Journal article)

Muszynski, G., Kashinath, K., Kurlin, V., & Wehner, M. (n.d.). Topological Data Analysis and Machine Learning for RecognizingAtmospheric River Patterns in Large Climate Datasets. doi:10.5194/gmd-2018-53

DOI: 10.5194/gmd-2018-53

Development of a Reconstruction Method for Major Vortex Structure around Tandem Flapping Wing Object via Vortex Trajectory Method (Conference Paper)

Ban, N., Yamazaki, W., & Kurlin, V. (2019). Development of a Reconstruction Method for Major Vortex Structure around Tandem Flapping Wing Object via Vortex Trajectory Method. In AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2019-2224

DOI: 10.2514/6.2019-2224

A Higher-Dimensional Homologically Persistent Skeleton (Journal article)

Kalisnik, S., Kurlin, V., & Lesnik, D. (2019). A Higher-Dimensional Homologically Persistent Skeleton. Advances in Applied Mathematics, 102(January 2019), 113-142. doi:10.1016/j.aam.2018.07.004

DOI: 10.1016/j.aam.2018.07.004

A Persistence-Based Approach to Automatic Detection of Line Segments in Images (Conference Paper)

Kurlin, V., & Muszynski, G. (2019). A Persistence-Based Approach to Automatic Detection of Line Segments in Images. In COMPUTATIONAL TOPOLOGY IN IMAGE CONTEXT, CTIC 2019 Vol. 11382 (pp. 137-150). doi:10.1007/978-3-030-10828-1_11

DOI: 10.1007/978-3-030-10828-1_11

Resolution-Independent Meshes of Superpixels (Conference Paper)

Kurlin, V., & Smith, P. (2020). Resolution-Independent Meshes of Superpixels. In ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I Vol. 11844 (pp. 194-205). doi:10.1007/978-3-030-33720-9_15

DOI: 10.1007/978-3-030-33720-9_15

Resolution-Independent Meshes of Superpixels. (Conference Paper)

Kurlin, V., & Smith, P. (2019). Resolution-Independent Meshes of Superpixels.. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, D. Ushizima, S. Chai, . . . P. Xu (Eds.), ISVC (1) Vol. 11844 (pp. 194-205). Springer. Retrieved from https://doi.org/10.1007/978-3-030-33720-9

2018

Towards a topological pattern detection in fluid and climate simulation data (Conference Paper)

Muszynski, G., Kashinath, K., Kurlin, V., Wehner, M., & Prabhat. (2018, September 19). Towards a topological pattern detection in fluid and climate simulation data. In Climate Informatics (pp. 4 pages). Boulder, Colorado, US. Retrieved from https://www2.cisl.ucar.edu/

Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design (Journal article)

Kurlin, V., Muszynski, G., Wehner, M., Shields, C., Rutz, J., Leung, L. -Y., & Ralph, M. (2018). Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design. Geoscientific Model Development, 11(6), 2455-2474. doi:10.5194/gmd-11-2455-2018

DOI: 10.5194/gmd-11-2455-2018

Superpixels optimized by color and shape (Conference Paper)

Kurlin, V., & Harvey, D. (2018). Superpixels optimized by color and shape. In Lecture Notes in Computer Science (pp. 14 pages). Venice, Italy: Springer Nature. Retrieved from http://kurlin.org/

2017

Convex constrained meshes for superpixel segmentations of images. (Journal article)

Forsythe, J., & Kurlin, V. (2017). Convex constrained meshes for superpixel segmentations of images. JOURNAL OF ELECTRONIC IMAGING, 26(6). doi:10.1117/1.JEI.26.6.061609

DOI: 10.1117/1.JEI.26.6.061609

Computing invariants of knotted graphs given by sequences of points in 3-dimensional space (Chapter)

Kurlin, V. (2017). Computing Invariants of Knotted Graphs Given by Sequences of Points in 3-Dimensional Space. In Mathematics and Visualization (pp. 349-363). Springer International Publishing. doi:10.1007/978-3-319-44684-4_21

DOI: 10.1007/978-3-319-44684-4_21

2016

Resolution-independent superpixels based on convex constrained meshes without small angles (Conference Paper)

Kurlin, V., Forsythe, J., & Fitzgibbon, A. (2016). Resolution-independent superpixels based on convex constrained meshes without small angles. In Lecture Notes in Computer Science. Las-Vegas, USA: Springer Verlag (Germany): Series. doi:10.1007/978-3-319-50835-1_21

DOI: 10.1007/978-3-319-50835-1_21

A fast persistence-based segmentation of noisy 2D clouds with provable guarantees (Journal article)

Kurlin, V. (2016). A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. Pattern Recognition Letters, 83(1), 3-12. doi:10.1016/j.patrec.2015.11.025

DOI: 10.1016/j.patrec.2015.11.025

A Linear Time Algorithm for Embedding Arbitrary Knotted Graphs into a 3-Page Book (Chapter)

Kurlin, V., & Smithers, C. (2016). A Linear Time Algorithm for Embedding Arbitrary Knotted Graphs into a 3-Page Book. In Unknown Book (Vol. 598, pp. 99-122). doi:10.1007/978-3-319-29971-6_6

DOI: 10.1007/978-3-319-29971-6_6

2015

Auto-completion of Contours in Sketches, Maps and Sparse 2D Images Based on Topological Persistence (Conference Paper)

Kurlin, V. (2014). Auto-completion of Contours in Sketches, Maps and Sparse 2D Images Based on Topological Persistence. In 16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014) (pp. 594-601). doi:10.1109/SYNASC.2014.85

DOI: 10.1109/SYNASC.2014.85

A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images (Conference Paper)

Kurlin, V. (2015). A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images. In COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT I Vol. 9256 (pp. 606-617). doi:10.1007/978-3-319-23192-1_51

DOI: 10.1007/978-3-319-23192-1_51

A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages (Conference Paper)

Kurlin, V. (2015). A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages. In Proceedings of the 6th International Conference on Information Visualization Theory and Applications. SCITEPRESS - Science and and Technology Publications. doi:10.5220/0005259900050016

DOI: 10.5220/0005259900050016

A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space (Journal article)

Kurlin, V. (2015). A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space. Computer Graphics Forum, 34(5), 253-262. doi:10.1111/cgf.12713

DOI: 10.1111/cgf.12713

Relaxed Disk Packing (Journal article)

Edelsbrunner, H., Iglesias-Ham, M., & Kurlin, V. (n.d.). Relaxed Disk Packing. Retrieved from http://arxiv.org/abs/1505.03402v1

Relaxed Disk Packing. (Conference Paper)

Ham, M. I., Edelsbrunner, H., & Kurlin, V. (2015). Relaxed Disk Packing.. In CCCG. Queen's University, Ontario, Canada. Retrieved from http://research.cs.queensu.ca/cccg2015/CCCG15-papers/CCCG%2715_Proc.html

2014

Computing a configuration skeleton for motion planning of two round robots on a metric graph (Conference Paper)

Kurlin, V., Safi-Samghabadi, M., & IEEE. (2014). Computing a configuration skeleton for motion planning of two round robots on a metric graph. In 2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM) (pp. 723-729). Retrieved from http://gateway.webofknowledge.com/

A fast and robust algorithm to count topologically persistent holes in noisy clouds (Conference Paper)

Kurlin, V., & IEEE. (2014). A fast and robust algorithm to count topologically persistent holes in noisy clouds. In 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) (pp. 1458-1463). doi:10.1109/CVPR.2014.189

DOI: 10.1109/CVPR.2014.189

2013

How many wireless sensors are needed to guarantee connectivity of a 1-dimensional network with random inter-node spacings? (Journal article)

Kurlin, V., & Mihaylova, L. (n.d.). Connectivity of Random 1-Dimensional Networks. Retrieved from http://arxiv.org/abs/0710.1001v2

2012

Computing braid groups of graphs with applications to robot motion planning (Journal article)

Kurlin, V. (2012). COMPUTING BRAID GROUPS OF GRAPHS WITH APPLICATIONS TO ROBOT MOTION PLANNING. HOMOLOGY HOMOTOPY AND APPLICATIONS, 14(1), 159-180. doi:10.4310/HHA.2012.v14.n1.a8

2010

Recognizing trace graphs of closed braids (Journal article)

Fiedler, T., & Kurlin, V. (2010). RECOGNIZING TRACE GRAPHS OF CLOSED BRAIDS. OSAKA JOURNAL OF MATHEMATICS, 47(4), 885-909. Retrieved from http://gateway.webofknowledge.com/

A 1-parameter approach to links in a solid torus (Journal article)

Fiedler, T., & Kurlin, V. (2010). A 1-parameter approach to links in a solid torus. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 62(1), 167-211. doi:10.2969/jmsj/06210167

DOI: 10.2969/jmsj/06210167

2008

Fiber quadrisecants in knot isotopies (Journal article)

Fiedler, T., & Kurlin, V. (2008). FIBER QUADRISECANTS IN KNOT ISOTOPIES. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 17(11), 1415-1428. doi:10.1142/S0218216508006695

All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron (Journal article)

Kearton, C., & Kurlin, V. (2008). All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 8(3), 1223-1247. doi:10.2140/agt.2008.8.1223

DOI: 10.2140/agt.2008.8.1223

Gauss paragraphs of classical links and a characterization of virtual link groups (Journal article)

Kurlin, V. (2008). Gauss paragraphs of classical links and a characterization of virtual link groups. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 145, 129-140. doi:10.1017/S0305004108001151

2007

The Baker-Campbell-Hausdorff formula in the free metabelian Lie algebra (Journal article)

Kurlin, V. (2007). The Baker-Campbell-Hausdorff formula in the free metabelian Lie algebra. JOURNAL OF LIE THEORY, 17(3), 525-538. Retrieved from http://gateway.webofknowledge.com/

Peripherally specified homomorphs of link groups (Journal article)

Kurlin, V., & Lines, D. (2007). Peripherally specified homomorphs of link groups. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 16(6), 719-740. doi:10.1142/S0218216507005440

DOI: 10.1142/S0218216507005440

Three-page encoding and complexity theory for spatial graphs (Journal article)

Kurlin, V. (2007). Three-page encoding and complexity theory for spatial graphs. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 16(1), 59-102. doi:10.1142/S021821650700521X

DOI: 10.1142/S021821650700521X

2005

Compressed Drinfeld associators (Journal article)

Kurlin, V. (2005). Compressed Drinfeld associators. JOURNAL OF ALGEBRA, 292(1), 184-242. doi:10.1016/j.jalgebra.2005.05.013

DOI: 10.1016/j.jalgebra.2005.05.013

2004

Three-page embeddings of singular knots (Journal article)

Kurlin, V. A., & Vershinin, V. V. (2004). Three-page embeddings of singular knots. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 38(1), 14-27. doi:10.1023/B:FAIA.0000024864.64045.de

DOI: 10.1023/B:FAIA.0000024864.64045.de

2003

Basic embeddings of graphs and Dynnikov's three-page embedding method (Journal article)

Kurlin, V. A. (2003). Basic embeddings of graphs and Dynnikov's three-page embedding method. RUSSIAN MATHEMATICAL SURVEYS, 58(2), 372-374. doi:10.1070/RM2003v058n02ABEH000617

DOI: 10.1070/RM2003v058n02ABEH000617

???????? ???????? ?????? ? ????? ?????????????? ???????? ????????? (Journal article)

??????, ?. ?., & Kurlin, V. A. (2003). ???????? ???????? ?????? ? ????? ?????????????? ???????? ?????????. Uspekhi Matematicheskikh Nauk, 58(2), 163-164. doi:10.4213/rm617

DOI: 10.4213/rm617

2001

?????????????? ????????? ????????? ?????????? $3$-????????? ?????? (Journal article)

??????, ?. ?., & Kurlin, V. A. (2001). ?????????????? ????????? ????????? ?????????? $3$-????????? ??????. ?????????????? ?????? ? ??? ??????????, 35(3), 84-88. doi:10.4213/faa264

DOI: 10.4213/faa264

Dynnikov three-page diagrams of spatial 3-valent graphs (Journal article)

Kurlin, V. A. (2001). Dynnikov three-page diagrams of spatial 3-valent graphs. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 35(3), 230-233. doi:10.1023/A:1012339231182

DOI: 10.1023/A:1012339231182

Three-page Dynnikov's Diagrams of Spatial 3-valent Graphs (Journal article)

Kurlin, V. (2001). Three-page Dynnikov's Diagrams of Spatial 3-valent Graphs. Functional Analysis and Its Applications, 35(3), 230-233.

2000

Basic embeddings into a product of graphs (Journal article)

Kurlin, V. (2000). Basic embeddings into a product of graphs. TOPOLOGY AND ITS APPLICATIONS, 102(2), 113-137. doi:10.1016/S0166-8641(98)00147-3

DOI: 10.1016/S0166-8641(98)00147-3

1999

Invariants of colored links (Journal article)

Kurlin, V. A. (1999). Invariants of colored links. Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, (4), 61-63.

The reduction of framed links to ordinary ones (Journal article)

Kurlin, V. (1999). The reduction of framed links to ordinary ones. RUSSIAN MATHEMATICAL SURVEYS, 54(4), 845-846. doi:10.1070/RM1999v054n04ABEH000190

DOI: 10.1070/RM1999v054n04ABEH000190

???????? ?????????? ?????????? ? ??????? (Journal article)

??????, ?. ?., & Kurlin, V. A. (1999). ???????? ?????????? ?????????? ? ???????. Uspekhi Matematicheskikh Nauk, 54(4), 177-178. doi:10.4213/rm190

DOI: 10.4213/rm190