2021
Breiding, P., Ikenmeyer, C., Michalek, M., & Hodges, R. (2021). Equations for GL invariant families of polynomials. Retrieved from http://arxiv.org/abs/2110.06608v1
Ikenmeyer, C., Komarath, B., & Saurabh, N. (2021). Karchmer-Wigderson Games for Hazard-free Computation. Retrieved from http://arxiv.org/abs/2107.05128v1
Bläser, M., Dörfler, J., & Ikenmeyer, C. (2021). On the Complexity of Evaluating Highest Weight Vectors.. In V. Kabanets (Ed.), Computational Complexity Conference Vol. 200 (pp. 29:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-193-1
Haas, L. J., & Ikenmeyer, C. (2021). Young Flattenings in the Schur module basis. Retrieved from http://arxiv.org/abs/2104.02363v1
Ikenmeyer, C., Komarath, B., & Saurabh, N. (2021). Karchmer-Wigderson Games for Hazard-free Computation.. Electron. Colloquium Comput. Complex., 28, 100.
Bläser, M., Ikenmeyer, C., Lysikov, V., Pandey, A., & Schreyer, F. O. (2021). On the orbit closure containment problem and slice rank of tensors. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 2565-2584).
2020
Fischer, N., & Ikenmeyer, C. (2020). The Computational Complexity of Plethysm Coefficients. COMPUTATIONAL COMPLEXITY, 29(2). doi:10.1007/s00037-020-00198-4DOI: 10.1007/s00037-020-00198-4
Bläser, M., Ikenmeyer, C., Mahajan, M., Pandey, A., & Saurabh, N. (2020). Algebraic Branching Programs, Border Complexity, and Tangent Spaces. In Leibniz International Proceedings in Informatics (LIPIcs) (pp. 1-24). Schloss Dagstuhl. doi:10.4230/LIPIcs.CCC.2020.21DOI: 10.4230/LIPIcs.CCC.2020.21
Bläser, M., Ikenmeyer, C., Mahajan, M., Pandey, A., & Saurabh, N. (2020). Algebraic Branching Programs, Border Complexity, and Tangent Spaces.. Electronic Colloquium on Computational Complexity (ECCC), 18(39). Retrieved from https://eccc.weizmann.ac.il/report/2020/031/
Algebraic Branching Programs, Border Complexity, and Tangent Spaces. (Conference Paper)
Bläser, M., Ikenmeyer, C., Mahajan, M., Pandey, A., & Saurabh, N. (2020). Algebraic Branching Programs, Border Complexity, and Tangent Spaces.. In S. Saraf (Ed.), Computational Complexity Conference Vol. 169 (pp. 21:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from http://www.informatik.uni-trier.de/~ley/db/conf/coco/coco2020.html
Implementing geometric complexity theory: on the separation of orbit closures via symmetries. (Conference Paper)
Ikenmeyer, C., & Kandasamy, U. (2020). Implementing geometric complexity theory: on the separation of orbit closures via symmetries.. In K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, & J. Chuzhoy (Eds.), STOC (pp. 713-726). ACM. Retrieved from https://doi.org/10.1145/3357713
On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions (Journal article)
Doerfler, J., Ikenmeyer, C., & Panova, G. (2020). On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 4(2), 354-376. doi:10.1137/19M1287638DOI: 10.1137/19M1287638
Fischer, N., & Ikenmeyer, C. (2020). The Computational Complexity of Plethysm Coefficients.. Comput. Complex., 29, 8. doi:10.1007/s00037-020-00198-4DOI: 10.1007/s00037-020-00198-4
2019
Ikenmeyer, C., & Kandasamy, U. (2020). Implementing Geometric Complexity Theory: On the Separation of Orbit Closures via Symmetries. PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 713-726. doi:10.1145/3357713.3384257DOI: 10.1145/3357713.3384257
Bläser, M., Ikenmeyer, C., Lysikov, V., Pandey, A., & Schreyer, F. -O. (2019). Variety Membership Testing, Algebraic Natural Proofs, and Geometric Complexity Theory. Retrieved from http://arxiv.org/abs/1911.02534v1
Garg, A., Ikenmeyer, C., Makam, V., Oliveira, R., Walter, M., & Wigderson, A. (2019). Search problems in algebraic complexity, GCT, and hardness of generator for invariant rings. Leibniz International Proceedings in Informatics, 1(9), 1-12. Retrieved from http://dx.doi.org/10.4230/LIPIcs.CCC.2020.12
Ikenmeyer, C., Komarath, B., Lenzen, C., Lysikov, V., Mokhov, A., & Sreenivasaiah, K. (2019). On the Complexity of Hazard-free Circuits. JOURNAL OF THE ACM, 66(4). doi:10.1145/3320123DOI: 10.1145/3320123
The Geometry of Rank Decompositions of Matrix Multiplication I: 2 x 2 Matrices (Journal article)
Chiantini, L., Ikenmeyer, C., Landsberg, J. M., & Ottaviani, G. (2019). The Geometry of Rank Decompositions of Matrix Multiplication I: 2 x 2 Matrices. EXPERIMENTAL MATHEMATICS, 28(3), 322-327. doi:10.1080/10586458.2017.1403981DOI: 10.1080/10586458.2017.1403981
Dörfler, J., Ikenmeyer, C., & Panova, G. (2019). On geometric complexity theory: Multiplicity obstructions are stronger than occurrence obstructions. Retrieved from http://arxiv.org/abs/1901.04576v1
Ikenmeyer, C., & Walter, M. (n.d.). Hyperpfaffians and Geometric Complexity Theory. Retrieved from http://arxiv.org/abs/1912.09389v2
Buergisser, P., Ikenmeyer, C., & Panova, G. (2019). No occurrence obstructions in geometric complexity theory. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 32(1), 163-193. doi:10.1090/jams/908DOI: 10.1090/jams/908
On the Complexity of Hazard-free Circuits. (Journal article)
Ikenmeyer, C., Komarath, B., Lenzen, C., Lysikov, V., Mokhov, A., & Sreenivasaiah, K. (2019). On the Complexity of Hazard-free Circuits.. J. ACM, 66, 25:1. doi:10.1145/3320123DOI: 10.1145/3320123
The Geometry of Rank Decompositions of Matrix Multiplication I: 2 × 2 Matrices. (Journal article)
Chiantini, L., Ikenmeyer, C., Landsberg, J. M., & Ottaviani, G. (2019). The Geometry of Rank Decompositions of Matrix Multiplication I: 2 × 2 Matrices.. Exp. Math., 28, 322-327. doi:10.1080/10586458.2017.1403981DOI: 10.1080/10586458.2017.1403981
2018
On Algebraic Branching Programs of Small Width (Journal article)
Bringmann, K., Ikenmeyer, C., & Zuiddam, J. (2018). On Algebraic Branching Programs of Small Width. Journal of the ACM, 65(5). doi:10.1145/3209663DOI: 10.1145/3209663
Blaeser, M., Ikenmeyer, C., Jindal, G., & Lysikov, V. (2018). Generalized Matrix Completion and Algebraic Natural Proofs. In STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (pp. 1193-1206). doi:10.1145/3188745.3188832DOI: 10.1145/3188745.3188832
Generalized Matrix Completion and Algebraic Natural Proofs. (Journal article)
Bläser, M., Ikenmeyer, C., Jindal, G., & Lysikov, V. (2018). Generalized Matrix Completion and Algebraic Natural Proofs.. Electron. Colloquium Comput. Complex., 25, 64.
2017
On the Complexity of Hazard-Free Circuits (Journal article)
Ikenmeyer, C., Komarath, B., Lenzen, C., Lysikov, V., Mokhov, A., & Sreenivasaiah, K. (2018). On the Complexity of Hazard-Free Circuits. STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 878-889. doi:10.1145/3188745.3188912DOI: 10.1145/3188745.3188912
Rectangular Kronecker coefficients and plethysms in geometric complexity theory (Journal article)
Ikenmeyer, C., & Panova, G. (2017). Rectangular Kronecker coefficients and plethysms in geometric complexity theory. Advances in Mathematics, 319, 40-66. doi:10.1016/j.aim.2017.08.024DOI: 10.1016/j.aim.2017.08.024
Ikenmeyer, C., & Lysikov, V. (2017). Strassen's 2x2 matrix multiplication algorithm: A conceptual perspective. Annali dell'Universit\`a di Ferrara. Sezione VII: Science matematiche. 65(2), pp. 241-248. (2019). Retrieved from http://dx.doi.org/10.1007/s11565-019-00318-1
On Algebraic Branching Programs of Small Width (Conference Paper)
Bringmann, K., Ikenmeyer, C., & Zuiddam, J. (2017). On Algebraic Branching Programs of Small Width. In 32ND COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2017) Vol. 79. doi:10.4230/LIPIcs.CCC.2017.20DOI: 10.4230/LIPIcs.CCC.2017.2
Polynomials and the exponent of matrix multiplication (Journal article)
Chiantini, L., Hauenstein, J. D., Ikenmeyer, C., Landsberg, J. M., & Ottaviani, G. (2018). Polynomials and the exponent of matrix multiplication. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 50(3), 369-389. doi:10.1112/blms.12147DOI: 10.1112/blms.12147
Fundamental invariants of orbit closures (Journal article)
Buergisser, P., & Ikenmeyer, C. (2017). Fundamental invariants of orbit closures. JOURNAL OF ALGEBRA, 477, 390-434. doi:10.1016/j.jalgebra.2016.12.035DOI: 10.1016/j.jalgebra.2016.12.035
Bringmann, K., Ikenmeyer, C., & Zuiddam, J. (2017). On algebraic branching programs of small width. Retrieved from http://arxiv.org/abs/1702.05328v2
On algebraic branching programs of small width (Journal article)
Bringmann, K., Ikenmeyer, C., & Zuiddam, J. (2017). On algebraic branching programs of small width.. Electron. Colloquium Comput. Complex., 24, 34.
2016
Geometric complexity theory and matrix powering (Journal article)
Gesmundo, F., Ikenmeyer, C., & Panova, G. (2017). Geometric complexity theory and matrix powering. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 55, 106-127. doi:10.1016/j.difgeo.2017.07.001DOI: 10.1016/j.difgeo.2017.07.001
Ballard, G., Ikenmeyer, C., Landsberg, J. M., & Ryder, N. (2019). The geometry of rank decompositions of matrix multiplication II: 3 x 3 matrices. JOURNAL OF PURE AND APPLIED ALGEBRA, 223(8), 3205-3224. doi:10.1016/j.jpaa.2018.10.014DOI: 10.1016/j.jpaa.2018.10.014
On the complexity of the permanent in various computational models (Journal article)
Ikenmeyer, C., & Landsberg, J. M. (2017). On the complexity of the permanent in various computational models. JOURNAL OF PURE AND APPLIED ALGEBRA, 221(12), 2911-2927. doi:10.1016/j.jpaa.2017.02.008DOI: 10.1016/j.jpaa.2017.02.008
On the relative power of reduction notions in arithmetic circuit complexity (Journal article)
Ikenmeyer, C., & Mengel, S. (2018). On the relative power of reduction notions in arithmetic circuit complexity. INFORMATION PROCESSING LETTERS, 130, 7-10. doi:10.1016/j.ipl.2017.09.009DOI: 10.1016/j.ipl.2017.09.009
Binary determinantal complexity (Journal article)
Huttenhain, J., & Ikenmeyer, C. (2016). Binary determinantal complexity. LINEAR ALGEBRA AND ITS APPLICATIONS, 504, 559-573. doi:10.1016/j.laa.2016.04.027DOI: 10.1016/j.laa.2016.04.027
Small Littlewood-Richardson coefficients (vol 44, pg 1, 2016) (Journal article)
Ikenmeyer, C. (2016). Small Littlewood-Richardson coefficients (vol 44, pg 1, 2016). JOURNAL OF ALGEBRAIC COMBINATORICS, 44(1), 31-32. doi:10.1007/s10801-016-0690-xDOI: 10.1007/s10801-016-0690-x
No occurrence obstructions in geometric complexity theory (Conference Paper)
Burgisser, P., Ikenmeyer, C., Panova, G., & IEEE. (2016). No occurrence obstructions in geometric complexity theory. In 2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) (pp. 386-395). doi:10.1109/FOCS.2016.49DOI: 10.1109/FOCS.2016.49
16,051 formulas for Ottaviani's invariant of cubic threefolds (Journal article)
Abdesselam, A., Ikenmeyer, C., & Royle, G. (2016). 16,051 formulas for Ottaviani's invariant of cubic threefolds. JOURNAL OF ALGEBRA, 447, 649-663. doi:10.1016/j.jalgebra.2015.11.009DOI: 10.1016/j.jalgebra.2015.11.009
On the relative power of reduction notions in arithmetic circuit complexity. (Journal article)
Ikenmeyer, C., & Mengel, S. (2016). On the relative power of reduction notions in arithmetic circuit complexity.. CoRR, abs/1609.05942.
2015
Rectangular Kronecker coefficients and plethysms in geometric complexity theory (Conference Paper)
Ikenmeyer, C., Panova, G., & IEEE. (2016). Rectangular Kronecker coefficients and plethysms in geometric complexity theory. In 2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) (pp. 396-405). doi:10.1109/FOCS.2016.50DOI: 10.1109/FOCS.2016.50
The Saxl conjecture and the dominance order (Journal article)
Ikenmeyer, C. (2015). The Saxl conjecture and the dominance order. DISCRETE MATHEMATICS, 338(11), 1970-1975. doi:10.1016/j.disc.2015.04.027DOI: 10.1016/j.disc.2015.04.027
Ikenmeyer, C. (2015). On McKay's propagation theorem for the Foulkes conjecture. Retrieved from http://arxiv.org/abs/1509.04957v1
Symmetrizing tableaux and the 5th case of the Foulkes conjecture (Journal article)
Cheung, M. -W., Ikenmeyer, C., & Mkrtchyan, S. (2017). Symmetrizing tableaux and the 5th case of the Foulkes conjecture. JOURNAL OF SYMBOLIC COMPUTATION, 80, 833-843. doi:10.1016/j.jsc.2016.09.002DOI: 10.1016/j.jsc.2016.09.002
On vanishing of Kronecker coefficients (Journal article)
Ikenmeyer, C., Mulmuley, K. D., & Walter, M. (2017). On vanishing of Kronecker coefficients. COMPUTATIONAL COMPLEXITY, 26(4), 949-992. doi:10.1007/s00037-017-0158-yDOI: 10.1007/s00037-017-0158-y
PERMANENT VERSUS DETERMINANT: NOT VIA SATURATIONS (Journal article)
Buergisser, P., Ikenmeyer, C., & Huettenhain, J. (2017). PERMANENT VERSUS DETERMINANT: NOT VIA SATURATIONS. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 145(3), 1247-1258. doi:10.1090/proc/13310DOI: 10.1090/proc/13310
On vanishing of Kronecker coefficients. (Journal article)
Ikenmeyer, C., Mulmuley, K. D., & Walter, M. (2015). On vanishing of Kronecker coefficients.. CoRR, abs/1507.02955.
Permanent versus determinant: not via saturations of monoids of representations. (Journal article)
Bürgisser, P., Ikenmeyer, C., & Hüttenhain, J. (2015). Permanent versus determinant: not via saturations of monoids of representations.. CoRR, abs/1501.05528.
2013
Complexity of Linear Circuits and Geometry (Journal article)
Gesmundo, F., Hauenstein, J. D., Ikenmeyer, C., & Landsberg, J. M. (2016). Complexity of Linear Circuits and Geometry. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 16(3), 599-635. doi:10.1007/s10208-015-9258-8DOI: 10.1007/s10208-015-9258-8
Hauenstein, J. D., Ikenmeyer, C., & Landsberg, J. M. (2013). Equations for lower bounds on border rank. Retrieved from http://arxiv.org/abs/1305.0779v2
2012
Bürgisser, P., & Ikenmeyer, C. (2012). Explicit Lower Bounds via Geometric Complexity Theory. Retrieved from http://arxiv.org/abs/1210.8368v2
Small Littlewood-Richardson coefficients (Journal article)
Ikenmeyer, C. (2016). Small Littlewood-Richardson coefficients. JOURNAL OF ALGEBRAIC COMBINATORICS, 44(1), 1-29. doi:10.1007/s10801-015-0658-2DOI: 10.1007/s10801-015-0658-2
Bürgisser, P., & Ikenmeyer, C. (2012). Deciding Positivity of Littlewood-Richardson Coefficients. Retrieved from http://arxiv.org/abs/1204.2484v2
2010
Buergisser, P., & Ikenmeyer, C. (2010). Geometric Complexity Theory and Tensor Rank. Retrieved from http://arxiv.org/abs/1011.1350v1
Bürgisser, P., Christandl, M., & Ikenmeyer, C. (2010). Even Partitions in Plethysms. Journal of Algebra, 328, 322-329. Retrieved from http://dx.doi.org/10.1016/j.jalgebra.2010.10.031
2009
Bürgisser, P., Christandl, M., & Ikenmeyer, C. (2009). Nonvanishing of Kronecker coefficients for rectangular shapes. Advances in Mathematics, 227, 2082-2091. Retrieved from http://dx.doi.org/10.1016/j.aim.2011.04.012