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Abstract

Results of Kirillov and Reshetikhin on constructing invariants of framed links
from the quantum group SU(2)g are adapted to give a simple formula relating the
invariants for a satellite link to those of the companion and pattern links used in its
construction. The special case of parallel links is treated first. It is shown as a
consequence that any SU(2)g-invariant of a link L is a linear combination of Jones
polynomials of parallels of L, where the combination is determined explicitly from
the representation ring of SU(2). As a simple illustration Yamada's relation between
the Jones polynomial of the 2-parallel of L and an evaluation of Kauffman's
polynomial for sublinks of L is deduced.

0. Introduction

In this paper we shall use methods from the paper of Kirillov and Reshetikhin [7]
to calculate invariants arising from the quantum group SU(2)g for links which are
constructed as satellites from given companion and pattern links. The methods
introduced in [7] allow an explicit tangle-based description, following the ideas of
Turaev[16]. Explicit tangle representations were constructed independently by
Kluitmann[6], also following the ideas of Turaev, directly from Drinfeld's discussion
of SU(2)g [1], while a wider theoretical framework is given by Reshetikhin in [12] and
[13], for quantum groups based on a general simple Lie algebra. The general case has
been followed up in the tangle setting by Reshetikhin and Turaev [14].

To begin with, we review some of the results of [7], and adapt them to relate
invariants of parallels of a link to invariants of the original link. The definitions for
the invariants in [7] are based on assignment of irreducible SU(2)?-modules to the
components of a link. We show in Section 2 that if the definition is extended
multilinearly to allow sums or formal linear combinations of modules on each
component then the invariant defined by taking the tensor product of two modules
on one component, Lx say, of a link L is the same as the invariant of a simple parallel
of L in which two parallel copies of Lx are used, with the two modules assigned
separately to the two copies. We can then relate invariants of general parallels of £
to invariants of L itself, using the known decomposition of tensor products, and
multilinearity to calculate them in terms of the irreducible module invariants for L.
As a consequence, we shall show how knowledge of the bracket polynomial of all
possible parallels of a link L is equivalent to knowing all the SU(2)g-invariants for L.
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In particular, we can readily deduce the result due to Yamada[17]^ on the Jones
polynomial of 2-parallels.

Having done this, we shall present the results on satellite knots in a form which
is strikingly reminiscent of the classical Fox formula for Alexander polynomials, and
which gives a key role to the Hopf link and its invariants. We give explicit finiteness
conditions limiting the number of invariants of the companion and pattern which are
needed in calculating a given invariant for the satellite.

1. Review of work of Kirillov and Beshetikhin

In the papers [12] and [13], the foundations of methods to calculate regular
isotopy invariants of link diagrams corresponding to finite-dimensional represen-
tations of quantum groups are set out. The idea is to set up a functor relating
tangles to module homomorphisms, following a scheme of Turaev as set out in a talk
at the Sussex meeting in 1987; see [14] and [5]. In this scheme oriented tangles
correspond to homomorphisms of finite-dimensional modules over a given quantum
group, in such a way that the natural tangle operations of composition and
'horizontal' adjoining correspond to composition and tensor products of modules.
(In order to give meaning to the tensor products, it is essential to use the coproduct
for the Hopf algebra structure of the quantum group.) Additional relations,
including the Yang-Baxter equation, allow us to use this correspondence to define
link invariants, by considering either (0,0)- or (1, l)-tangles; this will be made clear
later.

The paper [7] takes the programme outlined above, and fills in many details for the
case of the quantum group SU(2)9. For any quantum group arising from a simple Lie
algebra, it has been proved, [15], that the representations (which will always be
taken to be finite-dimensional from now on) are in 1-1 correspondence with those of
the original Lie algebra. In the case of su(2), there is one representation in every
dimension, indexed in [7] by half-integer 'spins'.

Turaev's general construction may be described for SU(2)g as follows. For each
tangle diagram T we assign a finite-dimensional irreducible representation of SU(2)g

to each string, or in other words an irreducible module over SU(2)g. We associate an
SU(2)9 module to the top of the tangle T by taking the tensor product of the modules
assigned to the strings, in order, which meet the top of T. We can similarly associate
a tensor product of modules with the bottom of T using the modules of the strings
which meet the bottom. The goal is then to produce a module homomorphism,
determined by T and the choice of modules on the strings, from the top module to
the bottom module, as indicated in Figure 1.

These homomorphisms will be chosen functorially so that when two tangles S and
T are composed to form the tangle ST, and the assignment of modules to strings is
compatible, then the module homomorphisms for S and T compose to give the
homomorphism for ST. We also arrange that when tangles are adjoined side by side
the homomorphism for the new tangle is the tensor product of the homomorphisms
for its constituents. In this general framework the module associated to the top of a
tangle where no strings are incident is the trivial module, which may be equated with
the ground ring or field A. In what follows, we take A to contain at least the Laurent
polynomial ring /[g^*], where the deformation parameter q in the quantum group is
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regarded as an indeterminate. We may need to extend A to contain the field of
fractions of this ring, but most of the representations which are used can be chosen
with bases so that representing matrices involve only the polynomial ring, and in
particular, the link invariants lie in this ring.

Definition of the homomorphisms. We shall assume that the tangle diagram lies in
general position relative to the height function measuring distance above the bottom
of the containing rectangle. Thus we assume that there are only a finite number of
levels in the tangle where critical points of the diagram occur, being either a local
maximum or minimum of the height function, or an apparent simple double point,
where two strings cross. We assume also that the critical points occur in distinct
levels. We may then decompose the original diagram level by level as the composite
of a number of elementary tangles each containing just one critical point. In each
elementary tangle all but two of the strings will pass from the top to the bottom
without crossing, while the rest of the tangle consists of one of the four tangles shown
in Figure 2.

We define the homomorphism for a general tangle T as the composite of the
homomorphisms for the elementary pieces. It then remains to define a homo-
morphism for each elementary tangle, and each assignment of irreducible modules
to the strings. We shall write Wt for the irreducible module of dimension i. This is the
module referred to in [7] by the half-integer spin j = \{i — 1). The construction for
SU(2)9 in [7], and similarly for other quantum groups, with a little alteration for local
extrema, as in [12, 13], is then completed simply by a choice of homomorphisms to
be used for positive and negative crossings, and the local extrema, U and V. In the
case of SU(2)9 the homomorphisms needed for the different string assignments will
be

Bij: W( ® W} -> W} ® Wf (+ ve crossings),

(B}i)~l :Wi®Wj-^Wj®Wi ( - ve crossings),

Invariance of the homomorphisms. The important result in the theory is that the
homomorphisms for the elementary tangles can be chosen so that the homomorphism
for a tangle T is unchanged when the tangle diagram is altered by any regular
isotopy, i.e. any sequence of Reidemeister moves of types II and III leaving the
boundary fixed.
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In the definition of the homomorphism we have taken account of the height
function on the tangle box, and so we must take note of how any regular isotopy of
the diagram may affect the height decomposition into elementary tangles. As noted
by Turaev, a regular isotopy between diagrams in general position can be arranged
to pass through a finite number of critical positions. These occur either where two
critical points in distant parts of the diagram interchange level, or where two or three
critical points interfere locally. The local interference can be limited to a small
number of cases, where the pairs of diagrams immediately before and after the
critical position are illustrated in Figure 3.

The first two of these are the familiar Reidemeister moves II and III. The third
arises from creation or annihilation of local extrema, while the last type arises when
a crossing moves across a local maximum.

Invariance of the homomorphism for a general tangle T under regular isotopy of
T is then guaranteed by proving simply its invariance under these moves. Thus it
is enough to show that the homomorphisms defined by the isotopic tangles in
Figure 3 are equal, for all assignments of modules. The horizontal lines in the figure
emphasise the decomposition of each tangle into elementary tangles which is used to
define the homomorphism.

The construction of Bi} in [7], and more generally in [12, 13], uses a universal
element

fleSU(2)8®SU(2)9

which automatically gives Reidemeister III invariance, from the Yang-Baxter
equation, while Reidemeister II invariance follows from the use of a homomorphism
and its inverse on the positive and negative crossings involved. The choice of Ut and
Vt is determined up to a scalar, as there is a single trivial summand in the module
Wj ® Wi for each i, giving JJi by inclusion and Vt by projection. Invariance in the third
case is simply a question of choosing the multiple for V{ given the choice for JJU since
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Fig. 4

the endomorphism of the irreducible module Wt, defined by the diagram with the two
local extrema must be a scalar multiple of the identity, by Schur's lemma. The fourth
case can be shown to follow from the fact that V( is a module homomorphism, using
the universal element R. This is best done by proving the equivalent relation for
homomorphisms defined by the tangles in Figure 4. Full details of these
homomorphisms, with explicit bases for the modules, and actions of SU(2)g are
contained in [7].

With the invariance of the homomorphism under regular isotopy of the tangle now
established, we adopt the term invariant of a tangle, with a given assignment of
modules to its strings, to mean the homomorphism between the top and bottom
modules. In particular, if we are given a link diagram, which we regard as a (0,0)-
tangle, and make an assignment of modules to its component strings, then the
invariant of this tangle will be an endomorphism of the ground ring A, which is
simply multiplication by some element of A. We will call this element of A the
invariant of the link, for the given assignment of modules to strings. For a given link
we shall consider the collection of all these invariants, as the assignment of modules
varies, to be the overall SU(2)9-invariant of the link. It depends on the link up to
regular isotopy, or equivalently on the link with a choice of framing on each
component. We will write J(L; Wt, Wt ,..., Wi) for the invariant of a framed link L
where the module Wik, of dimension ik is assigned to the &th component Lk.

In general, an endomorphism of any irreducible module will be some scalar
multiple of the identity, by Schur's lemma. We then have the following result.

THEOREM 1-1. If we attach any irreducible module of$\J(2)q to the end strings of a
(1, l)-tangle, the invariant obtained will be a scalar multiple of the identity.

COROLLARY 1-2. Given two such (1, l)-tangles Tx, T2 with invariants

TpidWf:Wt+Wt, TpeA,p=l,2,

the composite tangle TxoT2 will have invariant T1T2idW(.
This last result can be seen as a result on connected sums of knots and links; for

example if the tangles each have a single string to which we assign the module W2

then the scalar rp can be shown to be the bracket polynomial of the knot given by
closing the tangle Tp to form a (0,0)-tangle. This result shows that the bracket
polynomial of a connected sum of two knots is the product of the individual
polynomials, provided that they are normalized with the unknot having polynomial
1. In general, if we were to close the tangle Tp to a (0,0)-tangle then the new invariant
is the scalar Tp multiplied by the invariant St of the simple unknotted curve with
module Wt. The W2 invariant of a closed link is then the bracket polynomial, but
normalized so that the empty link has polynomial 1.

The invariant of the (1, l)-tangle consisting of a single positive curl, as shown in
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Figure 5 will be some scalar multiple, f( say, of the identity map on Wt when the
module W( is used on the string. For a negative curl, the scalar multiple of the
identity is/f1.

It follows that if we insert positive or negative curls in the diagram of a link to
change the framing on a component with module Wt, then the effect on the invariant
of the framed link is to multiply it by an appropriate power of this 'framing factor'
ft. Hence the invariants for the link with any other framing of its components can be
readily found from its invariants with the originally given framing.

We note here the values for/4 as calculated in [7], and also the invariants St for the
unknot with crossing-free diagram, and module Wt, which can be calculated from the
composite of U( and Vt. These are:

— 8

Here s = y/q; our treatment of right- and left-handed crossings differs from that of
[7] at this point as we have replaced their q by q-1. We may view ( —l)1"1^ = [n]g

as the ^-integer of n; it is a symmetrized version of the Gauss g-integer

Remark. Invariants for SU(re)9, for n > 2, can be constructed in a similar way,
using oriented tangles. Then on a given string we must use either a module W or its
conjugate W* depending on whether the string is currently oriented from top to
bottom, or from bottom to top. The homomorphisms for [/and Fhave to involve the
modules W <S> W*. A choice of scalar must be made at one point to ensure that the
invariants Sw and Sw» of the unknot oriented in either sense are equal, when using
the module W. This ensures that no correction for the rotation number of the
oriented diagram is required in passing to an invariant of a framed link.

Direct sum decompositions. In the particular case of SU(2)g, Jimbo [3] notes that
the tensor product of two irreducible modules splits into the direct sum of distinct
irreducibles as

Wt®W1^©Wk, \i-j\<k<i+j, k = i+j-lmod2.

We shall adopt the notation kei(£)j to mean that Wk is isomorphic to a summand
of Wt ® W/. Note that this is a symmetric relation for i, j and k, equivalent to their
forming the sides of a triangle whose perimeter is odd. There are then inclusion and
projection homomorphisms

YtrWk + Wt®W} and T^-.W^W^W,,,
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defined uniquely up to multiplication by a scalar. These correspond to the classical
Clebsch-Oordan coefficients.

Kirillov and Reshetikhin make a choice of these, so that

= i (1)

and

Of course

= id

fjY\-i = 0 for &=M,

(2)

(3)

by Schur's lemma. The endomorphisms

fli.i — yt.j yfc& t — I k Ii,j

of W{ ® Wj are then orthogonal idempotents which decompose the identity.
Kirillov and Reshetikhin represents the homomorphisms Y diagrammatically by

'Y'-shaped pieces of graph as shown in Figure 6, and consider homomorphisms
between modules which can be pictured using these fragments as well as the local
maxima and minima and crossings discussed above.

A labelled 'tangle-graph' is then allowed, in which strings may meet in 3-valent
vertices, and each arc is labelled with some module W{. As before, the tangle is
viewed, with a height function, as representing a module homomorphism from a top
module to a bottom module, where the homomorphisms Yfj, Y1^ are used at vertices
of the graph. (We set Ff} = 0 if k$i®j.) The relations (l)-(3) can then be written
diagrammatically as in Figure 7.

We can use relation (1) to start from a link diagram, and then 'fuse' two pieces of
parallel string, so as to write the invariant of the link diagram as the sum of certain
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graph invariants. To make further use of this we shall show how the graph invariants
themselves may sometimes be calculated in terms of other link invariants, by
manipulation of the graph.

This needs just a little care, as the homomorphisms corresponding to a graph
diagram will be altered by scalar multiples under certain natural changes of the
diagram. In particular, scalars rf plf },cf} are required when Yf} and Ut or Bij are
adjoined as shown in Figure 8. However the vertices will pass unaltered across other
strings, as shown in Figure 9.

Kirillov and Reshetikhin give an explicit choice of basis for each irreducible
module Wt, in which the homomorphisms J5y, Ut and Vi are all represented by
matrices with entries in Zfs*^]. There is freedom to alter the choice of each of the
homomorphisms Yf\}, and Y^ by a scalar multiple; the only scalar determined by a
particular choice for Yfj is that for Y^}. Both Ut and Y\l are homomorphisms from
Wt ® Wt to the scalars, so one will be a multiple of the other, as will Vt and Y] t. They
cannot however be chosen to be the same, since Y\ t Y\l = 1 while the choice of Vt is
dictated by Ut so as to satisfy the diagrammatic relation in Figure 3, and we then
have Vi Ui = St. In [7] the choice of scalars is made so that

Matrices for Y^* and generally Y1^ will then require entries in a ring extended to
contain appropriate denominators.

The choice of scalar multiples implicit in [7] for Yfj and Yft ensures that

ck
u = ck

u = ± V(fk/(fJ,)), where the sign is ( -1 )*«*-*-»

although the only unavoidable relation is that cf jcf i=fk/(f(fj). Their choice in
determining Yf (in relation to Yf} and other permutations of the indices i,j, k ensures
a measure of symmetry for the coefficients rfplfp which appear when 'arms' of an
elementary Y are moved up or down, and they have
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Whatever exact choice of scalar multiple is made for each of the elementary Y
fragments, it follows from the definition of cf} as

that { l J ^ ,

on writing Ffj-By Yfa* in two ways as a multiple of id (Wt). This also shows that

^icirYl, and

An important consequence is that the two diagrams combining Y1^ and Y{<1 as
shown in Figure 10 determine the same multiple of Vt, as one can be converted to the
other by inserting a pair of cancelling half-twists, at the expense of multiplying by
suitable constants, seen from the comments above to cancel. With the choices made
in [7] they are actually equal to Vt. The similar pair of diagrams with Yfj and Yk

Ui also
determine the same multiple of Ut.

2. Parallel invariants

Our first aim in this paper is to give a simple way of understanding and calculating
the invariants for parallels of links, in terms of the invariants of the link. To define
a parallel, we must choose a framing for each component of the link; we will always
use diagrams where the framing is defined by the plane of the given diagram. Write
L(Pl Pr) for the link given from L = L1 U ... U Lr by replacing the ith componentL(

by rpi parallel strands, with the same framing as Lt. We shall show how the invariants
of L<p" Pr> can be calculated from those of L itself. The crucial case is that of a 2-
parallel where just one of the components has been replaced by two strings, and the
others left unaltered. This is because the general case is such a 2-parallel, for example,
if p1 > 1 then L<p"-••Pr) is given from L(v*~x Pr) by doubling just one of the strings
parallel to L1.

The invariant J(L;V1,V2, ...,Vr) has been defined, following [7], for irreducible
modules Vv..., VT. We now extend the definition to the case in which each V( is the
direct sum of irreducible modules.

Definition. Let Vt be a direct sum of irreducible modules

Define J(L;VltV2 Vr) = £ J{L;Wti,...,Wir).
*1 *r

We can extend the definition further to allow elements V( in the representation ring
& of SU(2)9, that is, general linear combinations of irreducible modules. In this way
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Wi ® W:

Fig. 11

we may view J as giving a linear map J(L) :^?®r-> A for each framed link L with r
components. Since 3$ is spanned by the elements Wit the map J(L) is determined by
knowledge of J{L;Wi , ...,W() = Ltl ( , say, for all assignments of irreducible
modules Wik to components Lk of L.

We shall pay particular attention to the case of tensor products. With our
extended definition we have

J{L;Wi®W],Vz,...,Vr)= 2 J(L;Wk,V2,...,Vr),

W}^ © Wk.since

Our main result in this section is that we can also calculate this as an invariant of a
parallel link to L; as the referee has pointed out, this result also follows implicitly
from section 6-4 of [14].

THEOREM 2-1. When irreducible modules Wt, Wt are placed on the two strings parallel
to Lx in the link £(2>1- •1) then

»;Wt, Wp F2,..., Vr) = J(L;Wt®Wp F2,..., VT).

We illustrate this result in the case of a framed knot K and its 2-parallel K{2) in
Figure 11, where we have

COROLLARY 2-2. Theorem 2-1 holds when the irreducible modules Wt and are
replaced by any modules.

Proof. Use the fact that any module is isomorphic to a sum of irreducibles (see
[15]) and the definition of J on sums of modules, where the tensor product of the sum
is rewritten as the sum of tensor products in the usual way. I

Remark. Theorem 2-1 holds, with a similar proof, when any one of the components
Lt is replaced by two parallel strings. We give the proof for i = 1 to save unnecessary
complication in notation.

COROLLARY 2-3.

/ Pi TPl Pr \

pl,...,pr). y y y y y y \ _ 7| j . (V) y (V) y (So F I
1 * ' \ }-l )-l }-l /

Proof. As noted above, the link L<»>i.-.Pr> is the (2,1 1) parallel of L*"'"1 v'\



Jones 'polynomial invariants 93

• )

Fig.

/ 'r

\ ;

12

p1> I, taking two strings in place of one of the first group of p1 — 1 strings, or a
similar 2-parallel for the ith group if pi > 1. The result follows by induction on [pv

...,pr), using Corollary 22. I

Proof of Theorem 2 1 . It is enough to deal with the case when V2,...,Vr are
irreducible, by the definition of J for sums of modules. Consider a diagram of
L<21 1J with irreducible modules Wt and Wj on the two strings parallel to Lx and
irreducible modules V2,..., Vr on the other strings. This diagram represents, level by
level, a composite of module homomorphisms. At some level in the diagram replace
the identity homomorphism id (Wt ® Wj) represented by the two parallel strands by
the sum of the idempotents ^l^ei&}Ek

J. Now each Ek
J = Y^}Yfj is represented by the

graph shown in Figure 12, so that the invariant «/(L(2>1 • -1); Wo Wjt V2,..., Vr) is the
sum for kei®j of the invariants of graphs in which the parallel strings have been
replaced over a short section by the graph in Figure 12, with Wk on the single 'fused'
piece of string. The proof of Theorem 21 will be completed by showing that the
invariant for the graph with Wk on the fused part is equal to J(L; Wk, V2,..., VT), i.e.
the invariant where the two parallel strings have been fused throughout their length,
with Wk on the single resulting string.

We consider a sequence of graphs, each with two strings parallel to L1 for part of
its length, and a single string for the rest, connected at either end by an elementary
Y-fragment. We imagine that we move one of these Y-fragments like a zip around the
diagram, to fuse more of the two parallel strings into a single string. We show that
as we move the ' zip' from one position to another, keeping modules Wt and Wj on the
parallel strings, and Wk on the fused string, the invariant of the graph is unchanged
when the zip points the same way (i.e. up or down) in its initial and final positions.
When the two positions of the zip are in opposite directions then there is a factor
depending only on (i, j , k) to be taken into account. (This factor is 1 for the choices
in [7].)

The result will then follow, as we can start the zip-up with the two strings only
fused at Ek

J = Yl
k
<] Yf}. Treat the upward pointing fragment Y1^ as the zip, and move

it completely around L1 to reappear below the downward pointing Yf} as Y$, Y1^
while the rest of the parallel strings are replaced by the single string carrying the
module Wk. Since the zip still points upwards, the invariant has not altered in the
process, and it remains unchanged when we fuse the two strings entirely, using the
result that Y\y Y\* = id (Wk). The invariant is clearly unaltered in the zip-up process
when we move the zip across other strings as in Figure 9. It remains to analyse the
change as we move the zip over a local maximum or minimum of Lx. The
homomorphisms A and B given by the diagrams in Figure 13 are multiples of each
other, by a scalar m, depending on i,j and k, as indicated. Thus the invariant of our
graph is always multiplied by m as the zip passes over a local maximum, while
turning to the right. We shall show in Lemma 2-4 that the invariant is also multiplied
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by m as the zip passes a local maximum while turning to the left, and that it is
multiplied by m"1 on passing a local minimum in either way. Since the zip passes
through equal numbers of maxima and minima if its final position points in the same
sense as its initial position, the invariant is then unaltered under any such move, and
the result follows.

LEMMA 2-4. Suppose that A, B, C, D, A', B', C and D' are module homomorphisms
represented by the diagrams in Figure 13, and that B = mA. Then D = mC and B' =
mTlA', D' = m'W.

Proof. We have D = nC for some scalar n. Now the composite

A (id (Wk)
1) = mB (id (Wk) = mVk

as shown in Figure 14, while

CiYi-* <g> id (Wk)) = nD(Yl'* ® id (Hi)) = nVk.

It was noted in Section 1 that

A (id (Wk) ® yj.«) = C(Y^ ® id (Wt)),

as seen in Figure 10, giving the result that n = m.
We can show that

(A ® id (Hi)) (id (Hi) ® C) = id (Hi),
and

as in Figure 15. Thus the scalar relating C and D' must be m 1, and similarly for >4'
and £'.
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This completes the proof of Theorem 21 . I

By way of example, which will be very useful in this section on satellite links, we
shall evaluate the general SU(2)9-invariant Htj = J(H; Wt, Wt) of a 2-crossing diagram
of the Hopf link, H. The calculation, which is illustrated in Figure 16, starts by
inserting a positive curl into each component, to present the link, with altered
framing, as the 2-parallel of a diagram K for the unknot with a single twist. The two
strings may then be fused, to give the invariant as a sum of invariants for K, by
Theorem 21 .

J(K;Wk),Thus

where K is the unknot with a single twist. Now J(K; Wk) = Kk =fkSk, the framing
factor appearing because of the twist, and so

uti=/r1fr1

Then

kei®)

because kei<g)j increases in steps of 2 from \i— j \ + l to i+j—l. So (s — s~x)Hl} =
(-1)'+'(««-«-«).
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Table 1

Pi
0
1
2
3
4
5
6

1
0
1
0
2
0
5

1
0
2
0
5
0

1
0
3
0
9

1
0
4
0

1
0
5

1
0

Corollary 23 gives us the means of finding the invariants of a parallel of L by
taking the product in the representation ring Sfc of the modules on the parallel strings,
and then calculating J(L) with these products assigned to the corresponding
components. It is thus appropriate to look at the ring structure of M. Now ^ as an
algebra over A is known to be isomorphic to the representation ring of SU(2); that
is, a polynomial ring generated by W2, with the trivial module Wt as a multiplicative
identity. This is already implicit in the results of Jimbo quoted above. An alternative
spanning set for M then consists of the powers (W2)

p,p ^ 0, of the fundamental
irreducible module W2.

The explicit relation between this spanning set and the set of irreducibles is the
same as in the classical case. We can use the relation W2 ® Wt = WJ_X © Wi+1 to write
Wi+1€& inductively as a polynomial in W2 with integer coefficients. The expression
Wt = Tii~2oaip(W2)

v, with W1 = (Wi)°, can be found explicitly by the recurrence
relation ai+lp = aip_1 — aip. The matrix A = (aip),i ^ l,p ^ 0, of coefficients is lower
triangular, with aip = 0 for p ^ i and aip = 1 for p = i— 1.

Its inverse B = (bpk),p ^ 0, k ^ 1, is also unitriangular, and is given by

from the direct sum decomposition of Wfp into irreducibles. The positive integer
coefficients bpk are the classical Clebsch-Gordan coefficients for SU2 satisfying bplc =
&p-i,fc-i + &p_i,«:+!, and are given by a truncated Pascal triangle construction as
illustrated in Table 1.

Note that the left-most column of this table gives the Catalan numbers, and that
the entries in row p are the dimensions of irreducible representations of the braid
group Bp in the p-io\A tensor power of Wz.

While the invariants in [7] are viewed in terms of the basis of irreducible
representations, we can equally use the powers of W2 as a basis for SI and then we can
evaluate J(L) in terms of simple invariants of parallels of L, using Corollary 2*3 in the
reverse direction, as follows.

T H E O R E M 2-5. The complete invariant J(L) for a framed link L determines and is
determined by the Jones polynomials F(i/ ( p"-> P r )) of all (plt ...,pr) parallels of L.

Proof. The Jones polynomial V(L) of an oriented link L is known to be related to
the invariant L2i 2, where W2 is used on each component. Explicitly f% 82V(L) =
L22 2, where w is the writhe (signed number of crossings) of the framed diagram used
to calculate L22 „, and V is evaluated at t = s~2.
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X -
Fig. 17

Now J(L) can be calculated for any assignment of elements of M to the strings once
its value is known on elements of the spanning set (W2)

p of 01. Thus J(L) is determined
by J(L;(W2)

P>,...,{W2)
P') for all {p, pT). Since J(L;(W2)

P\...,{W2)
P') is, up to a

known factor, the Jones polynomial of the parallel link Lipi Pr), by Corollary 23,
we have established that J(L) is determined by the Jones polynomial for all parallels.

Indeed to find any given Lt t { = J(L; Wt,..., Wt) we need only use the Jones
polynomial for parallels 2/(Pl Vr) with pk ^ ik — 1, following the expression in 0t of W(

in terms of (W2)
p.

Conversely the Jones polynomial of the parallel L(p" -Pr) can be calculated, again
by Corollary 2-3, as a linear combination of the invariants Lt t with ik ^pk+\.

We complete this section by looking at some consequences.
Let L be the unknot with framing zero, so that it has a diagram with no crossings.

Then L{p} is similarly the unlink with p components and zero framing on each. This
diagram can be redrawn with the individual components moved well apart, so that

-V, Vp)=UJ(L;Vr).
<fc-i

The map J(L) :£?->-A is then a ring homomorphism for this L, by Corollary 2-3. So
J(L) is determined by its value S2 on the generator W2 of Si. Thus

where al} are the coefficients above.
There are no other known knots K for which J(K) = J(L) with L unknotted, nor

any for which J(K) is a ring homomorphism. It is not known whether J(K) may be
determined for some other choices ofK simply by its value on W2, although it is well
known that there are knots K',K" with J(K'; W2) = J{K"; W2) but J{K') 4= J{K"): see
[10]. Pairs of mutant knots K',K" are all known to have J(K') = J(K"), by the result
of [11] on the Jones polynomials of their parallels. Thus K'( = K"t for mutants for
each i.

It seems probable that there is in general some bound k depending on the
complexity of two knots K',K" such that if K'( = K"t for alii ^ 1c then J{K') = J(K").
This might possibly follow from some algebraic means of reconstruction all the
invariants K't given those with i ^ k, under appropriate complexity assumptions.

Our remark above that L22 2 =f2
w S2 V(L) can be shown by proving that L22 2 is

Kauffman's bracket polynomial <£>, normalized so that the unknot has value S2.
The proof follows by establishing that the bracket polynomial's skein relation, as
shown in Figure 17, holds for L22 2 with A = s*, where diagrams are interpreted as
parts of link diagrams with module W2 on each string. The skein relation can then be
read as a relation between endomorphisms of W2 ® W2, namely B22 = ^ id + s"*^ ŝ>
and this last equation is established by writing each side as a linear combination of
the idempotents E\'2 and E\~2.
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X - X - ")(-X>- [° •'
Fig. 18

We can make a similar interpretation of the invariant L33 3 in terms of
Kauffman's Dubrovnik invariant 3>L(A,z) of L as follows.

THEOREM 2-6. L33 3 = 2L(si,s2-s~2).

Proof. We shall assume that 3) is normalized to take the value 1 on the empty
knot, since all the invariants J(L) have this property. It is then enough to show that
L33 3 satisfies the appropriate skein relations, shown in Figure 18, with z — s2 — s~2

and A = s4. For La3 3 we must regard these relations as referring to parts of link
diagrams with W3 on all strings. Now the framing factor for W3 is/3 = s4, so that the
second relation is correct with A = s4.

The proof is completed by showing that

£33 _ (JB33J-1 = (S2 _ s -2) (i(J -U3V3)

as endomorphisms of W3 ® W3.
Write each side in terms of the idempotents E\'3, Ef3 and E\3 and compare

coefficients. We have

id = E3-3+E3
3'

3+E3-3,E3-3(B33)±1 = {ci

and U3V3 = S3E
3-3.

The required equations are then

C3,3 \C3,3^ — S S . {•&)

Now c\ 3 = s~*, c% 3 = —s~2 and c\tS = s2 as stated in Section 1, while S3 = s2 + l + s~2,
so the equations are satisfied. I

Remark. This is suggested by the result of Turaev[16], who states that the
invariant S>(tT,t — t~l) arises from the fundamental representation of the quantum
group of so(r+l) being attached to all strings of a link. We may note that S03

has the same Lie algebra as SU2, and that its fundamental representation is
3-dimensional, so that the link invariant might be expected to be the same as the
Wj-invariant.

We can use Theorem 2*6 to calculate L33 3 in terms of Jones polynomials, and in
this way give an alternative proof of a result of Yamada[19]. We remark first that
the invariant J(L; VY,..., Vr) where we have the trivial module Vt = Wx on component
i, is the same as the invariant of the sublink L' of L where the ith component is
deleted, and the other components have modules V} as before. Then for U} = V}+ W1

we have, by multilinearity,

J(L;Ult...,Ur)= S J(L';{Vt})
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where the sum is taken over all sublinks L' of L with the module V} assigned to the
component L} provided that this component remains in the sublink L'. An obvious
modification can be made for elements U}e& which are linear combinations of V} and
Wlt giving Yamada's operation of summing weighted combinations of invariants
over sublinks.

Since (W2)
2 = Wt + W3eSi we immediately have

J(L;(W2)\...,(W2?) = S Li,...,.

Now

and L'33 3 = 3>v(s*, s2 — s~2), giving Yamada's relation between V for a 2-parallel of L
and 2) for its sublinks, including L itself and the empty link. It is equally easy,
writing W3 = — (H^)2 + Ŵ , to express L33 3 as a sum of Jones polynomials of 2-
parallels of sublinks.

3. Satellite links

The parallel construction in the last section is a special case of a satellite link
formed from a companion link C and patterns Pi for each component Ct of C. The
pattern is often described as an (s+ l)-component link, where one component is an
unknotted axis. The complement of the axis is a solid torus, in which the remaining
s components form a closed tangle. This is used to replace the interior of a regular
neighbourhood of a component of C, as illustrated in Figure 19. In calculating the
invariants of the satellite we shall use the framing which comes from the companion
and pattern diagrams. We shall show that, as in the case of the Alexander
polynomial, the SU(2)9-invariants of a satellite link S are determined by those of the
companion C and patterns Pt. Having done this, we shall give some indication of how
many of the invariants involved we would need to know in order to calculate one
individual invariant of the satellite.

To simplify matters, we shall assume that we only wish to put a non-trivial pattern
on one component of the link C, which we shall take to be the first; multiple patterns
can then be applied sequentially.

The main result is proved in the next theorem, using the fusion and zip-up methods
from Section 2. The diagrams occurring as part of the induction involve tangle
graphs, as defined in Section 1.

THEOREM 3-1. Let T be a tangle-graph with n inputs and outputs, and let modules be
assigned to all edges of T so that it represents an endomorphism a.(T) ofWt ® ... ® Wt .
Let C be any link diagram, and let S be given from the (n, 1,..., 1) parallel of C by
inserting T at some level on the strings parallel to the first component of C. In S assign
modules to the edges of T and the strings parallel to the first component of C as in the
definition ofa(T). Make any choice of modules V2, ...,Vron the remaining components (if
any) of C.

Then there are coefficients gf*(T), depending only on <x(T) and k e il (g>... ® in such that
the diagram S has invariant

S g*iT)J(C;Wk,V2,...,Vr).



100 H. R. MORTON AND P. STRICKLAND

Pattern link Companion

Fig. 19
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Notation. We write above k e il ® ... (g) in to mean that Wk is a summand of

Proof. We argue by induction on n. When n = 1 we have a(T) as a scalar multiple
of id(W^) by Schur's lemma, and this scalar forms the single coefficient gr£(T).

For TO > 1 we shall fuse the last two of the parallel strings immediately above T.
Writing i = in_x and j = in, we replace id (W( ® W}) by S r e 4 l g l ^p . The invariant of S
is then the sum of invariants of diagrams with two strings fused immediately above
T. The invariant of each of these diagrams is unaltered by the zipping up process of
Section 2, where we take the upward pointing fragment Y\'j and move it around the
last two parallel strings to reappear eventually immediately below T. The new
diagram is constructed from C in the same way as S, with n — 1 strings in place of n
and the tangle graph T' in place of T as shown in Figure 20. For each lei®j there
is an endomorphism a,(7") of Wt ® ... ® Wt _ ®Wt constructed from ac(T) and the
maps Y]'j and Y\}. By induction there are coefficients <7* ( : r ) such that the diagram has
invariant

The invariant for S is then the sum of these over I, and we can take <7*(T) =
o complete the proof. I

Apply the theorem with C as the Hopf link, and T as a tangle. Then S is the closure
of T together with an unknotted axis forming a pattern link as in Figure 19. Suppose
that the closure of T consists of a single component. Then <x(T) will be determined by
just one choice of module Wt say, for all the strings in T, and we may write g\ in place
°f 9*(T)- More generally, where the closure of T has s components there will be a choice
of ix,..., i8 in determining oc(T), and we could write gf t for g*{T).

Where T has one component in its closure the pattern link P has invariants Pip

from the choice of modules W} on the axis and Wt on the closure of T. Then Ptj =
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by Theorem 3-l, where k runs over a finite set determined by i and the

number of tangle strings passing through the axis. Any satellite S with pattern link
P will have invariants related to its companion C by exactly the same set of
coefficients cff. Now given Pi} and Hjk we can recover the coefficients gf, since for each
fixed i there are only a finite number of k with g* =t= 0, and we can solve the equations
for g* by inverting a truncated matrix H = (Hk:j). We then have

THEOREM 3-2. The invariants J(S) of a satellite knot S constructed from a companion
C with pattern P can be determined from J{C), J(P) and the Hopf link invariants J(H).

Proof. We can find the coefficients g*, or more generally gf t, from J(P) and J(H)
and then we have J(S) from gf and J(C). I

In the case where C and S each have one component the relation can be written
in matrix terms as

where <$ = (grf), tf = (Hk}), & = (P{j) are matrices and S? = (St), <tf = (Ck) are column
vectors. Although these equations involve infinite matrices they do make sense
because IS is row finite. A similar result holds in general, with Sf, *&', & and &
interpreted as multi-indexed tensors.

To work out the satellite invariant St say, where the satellite S has a single
component, we note that g* = 0 for k > ni, where there are n strings passing through
the axis in the pattern link P. In calculating the invariants up to St we may truncate
^ to an i x ni matrix, &P to an ni x ni matrix, and the others correspondingly. The
truncated Hopf array will be invertible (away from roots of unity) and in terms of
the truncated matrices we shall have

It is interesting to compare this with Fox's formula for Alexander invariants of
satellites, in terms of a decomposition of a link exterior as a union of link exteriors
[2, 9]. In the case of a satellite the exterior is the union of the exteriors of the
companion and the pattern link, and their intersection can be taken as a torus, or
equally as a thickened torus, which may be viewed as the exterior of the Hopf link.

The result above shows that if we interpret the invariant J(P) of the pattern link
as a map from ^®<s+1> to A where each factor 8ft. is associated to one boundary
component of the link exterior, and choice of longitude and meridian, then <& can be
viewed as a map from M®* to M in which the component corresponding to the axis
has been turned around, using the Hopf link invariant J(H): ffl (g) ffl. -*• A as a bilinear
form to ' raise' one index. Composition of *§ with the invariant of the companion then
produces the invariant of the satellite, in a way that corresponds to the construction
of the satellite exterior as a union of the other link exteriors.

Remarks. In a more algebraic approach it is natural to split the endomorphism
a(T) determined by the tangle T in the pattern into a direct sum of endomorphisms
of isotypic submodules isomorphic to Wk ® Vk for different k, where Vk is a trivial
module of some dimension. Then <x(T) determines an endomorphism of each Vk,
having g*(T) as its trace.
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In his work on parallel link invariants Murakami [8] produces irreducible
representations of the braid group related to the Jones polynomial of parallels of a
given link. These give invariants closely connected to the invariants determined by
the quantum group approach, but constructed independently. He then treats the
case of satellites from this point of view and gives a character formula for the
invariants of a satellite, which may be compared with the formula here.

Reshetikhin and Turaev[14] have recently formalized the requirements on a Hopf
algebra A which permit the definition of a link invariant when any choice of A-
module, not necessarily irreducible, is allowed for each component. These 'ribbon
Hopf algebras' exist as central extensions of quantum groups for each of the
quantum groups associated to the simple Lie groups. The resulting invariants can be
proved to behave multilinearly under sums of module. Furthermore the invariant
determined by selecting a tensor product of two modules for one component of a link
can be directly identified with the invariant given by taking two parallel strings in
place of that component with the two modules assigned separately to the two strings.
A result about invariants of parallels similar to that in Section 2 then follows in this
setting, where the proof of multilinearity takes the place of the lemmas in Section 2
on zipping up strands past local extrema.

We would like to thank Mark Kidwell and Antony Wassermann for many helpful
discussions. The second author was supported during this work by SERC grant
GR/D/98662.
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